Abstract:
An integrated optofluidic system for trapping and transporting particles for analysis is provided comprising a planar substrate; a microfluidic channel; and a waveguide integrated with the channel. A microsphere particle in the integrated optofluidic system can act as a cavity, allowing light to circulate many thousands of times around the circumference of the microsphere. Optical trapping and transport is used for nanoscale positioning to excite the microsphere resonances. Sensitive measurements on molecules can be accomplished by monitoring changes in whispering gallery modes (WGMs) that propagate around the circumference of the microsphere. By using a broadband or supercontinuum light source, a microsphere can be trapped and many WGM resonances can be excited through the visible and near-infrared wavelengths simultaneously. After the resonances are measured using the waveguide transmission, the microsphere can be freed by decreasing the optical power and the process repeated with a different microsphere.
Abstract:
An integrated optofluidic system for trapping and transporting particles for analysis is provided comprising a planar substrate; a microfluidic channel; and a waveguide integrated with the channel. A microsphere particle in the integrated optofluidic system can act as a cavity, allowing light to circulate many thousands of times around the circumference of the microsphere. Optical trapping and transport is used for nanoscale positioning to excite the microsphere resonances. Sensitive measurements on molecules can be accomplished by monitoring changes in whispering gallery modes (WGMs) that propagate around the circumference of the microsphere. By using a broadband or supercontinuum light source, a microsphere can be trapped and many WGM resonances can be excited through the visible and near-infrared wavelengths simultaneously. After the resonances are measured using the waveguide transmission, the microsphere can be freed by decreasing the optical power and the process repeated with a different microsphere.
Abstract:
A spectrometer is provided, the spectrometer having an interferometer generating an interferogram by splitting an interferometer input signal between a reference arm and a variable delay arm, and introducing a delay between the split interferometer input signals prior to interfering the split interferometer input signals. The spectrometer additionally has a controllable delay element operable to adjust the delay introduced by the interferometer and a dispersive element outputting a plurality of narrowband outputs representative of a received broadband input signal. The interferometer and dispersive element are optically connected to output a plurality of narrowband interferograms representative of a spectra of a spectrometer input signal received by the spectrometer, and the plurality of narrowband interferograms are received by a detector array for analysis.
Abstract:
An interferometer comprising a planar substrate is provided. The interferometer has a splitter formed on the planar substrate to split a received optical signal, a sample arm formed on the planar substrate to receive a first portion of the split optical signal and direct the first portion toward a sample, a reference arm formed on the planar substrate to receive a second portion of the split optical signal, and a detector element to receive an interferogram generated by interfering the second portion of the split optical signal with a received sample signal generated by the first portion of the split signal interacting with the sample.