Abstract:
A method for forming a crystalline metal layer on a three-dimensional (3D) substrate is provided. The method includes applying crystal growth ink to a surface of the 3D substrate, wherein the crystal growth ink includes a metal ionic precursor and a structuring liquid; and exposing the 3D substrate to plasma irradiation from plasma in a vacuum chamber to cause the growing of a crystalline metal layer on the 3D substrate, wherein the exposure is based on a set of predefined exposure parameters.
Abstract:
A composition for forming a patterned thin metal film on a substrate is presented. The composition includes metal cations; and at least one solvent, wherein the patterned thin metal film is adhered to a surface of the substrate upon exposure of the at least metal cations to a low-energy plasma.
Abstract:
A method for forming a metal active component in a hybrid material is provided. The method includes applying a metal precursor formulation on a substrate; and exposing the metal precursor formulation applied on the substrate to a low-energy plasma, wherein the low-energy plasma is operated according to a set of exposure parameters.
Abstract:
A composition for forming a patterned thin metal film on a substrate is presented. The composition includes metal cations; and at least one solvent, wherein the patterned thin metal film is adhered to a surface of the substrate upon exposure of the at least metal cations to a low-energy plasma.
Abstract:
A method for growing a transparent conductive metal layer on a substrate is disclosed. The method includes the steps of applying crystal growth ink to a surface of the substrate, wherein the crystal growth ink includes a metal ionic precursor; and exposing the substrate to plasma irradiation to cause the growing of a crystalline metal framework on the substrate, wherein the exposure is based on a set of predefined exposure parameters.
Abstract:
A method and system for forming a thin patterned metal film on a substrate are presented. The method includes applying an ink composition on a pre-treated surface of the substrate, wherein the ink composition includes at least metal cations; and exposing at least the applied ink composition on the substrate to a low-energy plasma, wherein the low-energy plasma is operated according to a first set of exposure parameters.