Abstract:
Package-integrated thin film lithium ion battery and methods for fabricating the same are disclosed. In one example, an electronic package includes an organic package substrate, and a lithium (Li) ion thin film battery (TFB) integrated into the organic package substrate. The Li ion TFB is formed in or on the organic package substrate or the Li ion TFB can be embedded in the organic package substrate. The Li ion TFB includes an anode layer, electrolyte layer, cathode layer, and anode and cathode current collector layers. The cathode layer can be a crystalline transition metal oxide cathode layer including lithium cobalt oxide LiCoO2 (LCO) or lithium manganese oxide LiMn2O3 The cathode layer is laser annealed to crystallize the cathode layer. The organic package substrate is a low temperature substrate such that the organic package substrate is maintained at a temperature of 215 C or less when the cathode layer is laser annealed. The organic package substrate can also be a flexible organic package substrate.
Abstract:
Embodiments of the invention include an active venting system. According to an embodiment of the invention, the active venting system may include a substrate having one or more seams formed through the substrate. In order to open the vents defined by the seams through the substrate, a piezoelectric layer may be formed proximate to one or more of the seams. Additional embodiments may include a first electrode and a second electrode that contact the piezoelectric layer in order to provide a voltage differential across the piezoelectric layer. In an embodiment the active venting system may be integrated into a garment. In such an embodiment, the garment may also include an electronics module for controlling the actuators. Additionally, conductive traces may be printed on the garment or sewn into the garment to provide electrical connections from the electronics module to each of the piezoelectric actuators.
Abstract:
Embodiments include a waveguide bundle, a dielectric waveguide, and a vehicle. The waveguide bundle includes dielectric waveguides, where each dielectric waveguide has a dielectric core and a conductive coating around the dielectric core. The waveguide bundle also has a power delivery layer formed around the dielectric waveguides, and an insulating jacket enclosing the waveguide bundle. The waveguide bundle may also include the power deliver layer as a braided shield, where the braided shield provides at least one of a DC and an AC power line. The waveguide bundle may further have one of the dielectric waveguides provide a DC ground over their conductive coatings, where the AC power line does not use the braided shield as reference or ground. The waveguide bundle may include that the power delivery layer is separated from the dielectric waveguides by a braided shield, where the power delivery layer is a power delivery braided foil.
Abstract:
Waveguides disposed in either an interposer layer or directly in the semiconductor package substrate may be used to transfer signals between semiconductor dies coupled to the semiconductor package. For example, inter-semiconductor die communications using mm-wave carrier signals launched into waveguides specifically tuned to optimize transmission parameters of such signals. The use of such high frequencies beneficially provides for reliable transmission of modulated high data rate signals with lower losses than conductive traces and less cross-talk. The use of mm-wave waveguides provides higher data transfer rates per bump for bump-limited dies as well as beneficially providing improved signal integrity even at such higher data transfer rates. Such mm-wave waveguides may be built directly into semiconductor package layers or may be incorporated into one or more interposed layers that are physically and communicably coupled between the semiconductor dies and the semiconductor package substrate.
Abstract:
A method of forming a waveguide comprises forming an elongate waveguide core including a dielectric material; and arranging a conductive sheet around an outside surface of the dielectric core to produce a conductive layer around the waveguide core.
Abstract:
A method of making a waveguide, comprises: extruding a first dielectric material as a waveguide core of the waveguide, wherein the waveguide core is elongate; and coextruding an outer layer with the waveguide core, wherein the outer layer is arranged around the waveguide core.
Abstract:
Embodiments include a sensor node, an active sensor node, and a vehicle with a communication system that includes sensor nodes. The sensor node include a package substrate, a diplexer/combiner block on the package substrate, a transceiver communicatively coupled to the diplexer/combiner block, and a first mm-wave launcher coupled to the diplexer/combiner block. The sensor node may have a sensor communicatively coupled to the transceiver, the sensor is communicatively coupled to the transceiver by an electrical cable and located on the package substrate. The sensor node may include that the sensor operates at a frequency band for communicating with an electronic control unit (ECU) communicatively coupled to the sensor node. The sensor node may have a filter communicatively coupled to the diplexer/combiner block, the transceiver communicatively coupled to the filter, the filter substantially removes frequencies from RF signals other than the frequency band of the sensor.
Abstract:
A system for packaging integrated circuits includes an integrated circuit having one or more integrated circuit terminals. The system for packaging integrated circuits also includes a substrate having one or more substrate terminals. The system for packaging integrated circuits further includes an electrically conductive adhesive in communication with the integrated circuit terminals and the substrate terminals. The electrically conductive adhesive establishes an electrical connection between each of the one or more integrated circuit terminals and the one or more substrate terminals. The electrical connection between each of the one or more integrated circuit terminals and the one or more substrate terminals are enclosed in a dielectric. The system for packaging integrated circuits includes a second adhesive in communication with the integrated circuit and the substrate, wherein the second adhesive couples the integrated circuit and substrate together.
Abstract:
Embodiments of the invention include a wearable blood-pressure monitor and methods of forming such devices. In an embodiment, the blood-pressure monitor includes a stretchable substrate. Additionally, a semiconductor die may be embedded within the stretchable substrate. In order to determine blood-pressure, the blood-pressure monitor may include an electrocardiogram sensor and a piezoelectric sensor for detecting a ballistocardiograph response. In an embodiment, both types of sensor may be electrically coupled to the semiconductor die. Embodiments of the invention include a piezoelectric sensor that includes a piezoelectric layer and a first and second electrode. In an embodiment the first electrode is in contact with a first surface of the piezoelectric layer, and the second electrode is in contact with a second surface of the piezoelectric layer that is opposite to the first surface.
Abstract:
Embodiments of the invention include an optoelectronic package that allows for in situ alignment of optical fibers. In an embodiment, the optoelectronic package may include an organic substrate. Embodiments include a cavity formed into the organic substrate. Additionally, the optoelectronic package may include an actuator formed on the organic substrate that extends over the cavity. In one embodiment, the actuator may include a first electrode, a piezoelectric layer formed on the first electrode, and a second electrode formed on the piezoelectric layer. According to an additional embodiment of the invention, the actuator may include a first portion and a second portion. In order to allow for resistive heating and actuation driven by thermal expansion, a cross-sectional area of the first portion of the beam may be greater than a cross-sectional area of the second portion of the beam.