Abstract:
Embodiments include a waveguide bundle, a dielectric waveguide, and a vehicle. The waveguide bundle includes dielectric waveguides, where each dielectric waveguide has a dielectric core and a conductive coating around the dielectric core. The waveguide bundle also has a power delivery layer formed around the dielectric waveguides, and an insulating jacket enclosing the waveguide bundle. The waveguide bundle may also include the power deliver layer as a braided shield, where the braided shield provides at least one of a DC and an AC power line. The waveguide bundle may further have one of the dielectric waveguides provide a DC ground over their conductive coatings, where the AC power line does not use the braided shield as reference or ground. The waveguide bundle may include that the power delivery layer is separated from the dielectric waveguides by a braided shield, where the power delivery layer is a power delivery braided foil.
Abstract:
Dynamic memory performance throttling. An embodiment of a memory device includes a memory stack including coupled memory elements, the memory elements including multiple ranks, the plurality of ranks including a first rank and a second rank, and a logic device including a memory controller. The memory controller is to determine an amount of misalignment between data signals relating to a read request for the first rank and a read request for the second rank, and, upon determining that misalignment between the first rank and the second rank is greater than a threshold, the memory controller is to insert a time shift between a data signal for the first rank and a data signal for the second rank.
Abstract:
Dynamic operations for operations for a stacked memory with interface providing offset interconnects. An embodiment of memory device includes a system element and a memory stack coupled with the system element, the memory stack including one or more memory die layers. Each memory die layer includes first face and a second face, the second face of each memory die layer including an interface for coupling data interface pins of the memory die layer with data interface pins of a first face of a coupled element. The interface of each memory die layer includes connections that provide an offset between each of the data interface pins of the memory die layer and a corresponding data interface pin of the data interface pins of the coupled element.
Abstract:
Memory operations using system thermal sensor data. An embodiment of a memory device includes a memory stack including one or more coupled memory elements, and a logic chip coupled with the memory stack, the logic chip including a memory controller and one or more thermal sensors, where the one or more thermal sensors include a first thermal sensor located in a first area of the logic chip. The memory controller obtains thermal values of the one or more thermal sensors, where the logic element is to estimate thermal conditions for the memory stack using the thermal values, the determination of the estimated thermal conditions for the memory stack being based at least in part on a location of the first thermal sensor in the first area of the logic element. A refresh rate for one or more portions of the memory stack is modified based at least in part on the estimated thermal conditions for the memory stack.
Abstract:
A stacked memory allowing variance in device interconnects. An embodiment of a memory device includes a system element for the memory device, the system element including multiple pads, and a memory stack connected with the system element, the memory stack having one or more memory die layers, a connection of the system element and the memory stack including interconnects for connecting a first memory die layer and the plurality of pads of the system element. For a single memory die layer in the memory stack, a first subset of the plurality of pads is utilized for a first group of interconnects for the connection of the system element and the memory stack, and for two or more memory die layers, the first subset and an additional second subset of the plurality of pads are utilized for the first group of interconnects and a second group of interconnects for the connection of the system element and the memory stack.
Abstract:
A temperature difference between a first thermal sensor and a second thermal sensor on a first die is determined. The temperature difference is transmitted from the first die to a circuit on a second die. A temperature from a thermal sensor on the second die is determined. The temperature difference and the temperature from the thermal sensor are utilized on the second die to modify operational characteristics of one or more circuits on the second die.