Abstract:
A vibration source (10) includes an armature bar (12) having a major length dimension, and a driver (20A) positioned about the armature bar. The driver (20A) is movably coupled to the armature bar (12), and includes an electromagnet (40). During operation the electromagnet (40) is activated such that the driver (20A) moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar. A described method for generating a vibratory signal in an object includes positioning the vibration source (10) in an opening of the object, coupling the armature bar (12) to a surface of the object within the opening, and activating the electromagnet (40) of the driver (20A) such that the driver moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar and the object.
Abstract:
A composite piezoelectric transducer, whose piezoelectric element is a ribbon wound film of piezoelectric material (101). As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate (103) may be placed on the side of the winding.
Abstract:
A method of indirectly measuring the diluent (nitrogen and carbon dioxide) concentrations in a natural gas mixture. The molecular weight of the gas is modeled as a function of the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. A set of reference gas mixtures with known molecular weights and diluent concentrations is used to calculate the constant values. For the gas in question, if the speed of sound in the gas is measured at three states, the three resulting expressions of molecular weight can be solved for the nitrogen and carbon dioxide concentrations in the gas mixture.
Abstract:
A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.
Abstract:
A gas sensor (100), whose chamber (101) uses filters (106a, 106b) and choppers (107a, 107b) in either a semicircular geometry or annular geometry, and incorporates separate infrared radiation filters and optical choppers. This configuration facilitates the use of a single infrared radiation source (102) and a single detector (103) for infrared measurements at two wavelengths, such that measurement errors may be compensated.
Abstract:
A gas sensor, whose chamber uses filters and choppers in either a semicircular geometry or annular geometry, and incorporates separate infrared radiation filters and optical choppers. This configuration facilitates the use of a single infrared radiation source and a single detector for infrared measurements at two wavelengths, such that measurement errors may be compensated.
Abstract:
A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.
Abstract:
A method of indirectly measuring the diluent (nitrogen and carbon dioxide) concentrations in a natural gas mixture. The molecular weight of the gas is modeled as a function of the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. A set of reference gas mixtures with known molecular weights and diluent concentrations is used to calculate the constant values. For the gas in question, if the speed of sound in the gas is measured at three states, the three resulting expressions of molecular weight can be solved for the nitrogen and carbon dioxide concentrations in the gas mixture.
Abstract:
A composite piezoelectric transducer, whose piezoelectric element is a "ribbon wound" film of piezoelectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.