Abstract:
The present invention includes a method for distinguishing between a natural source of deep gas and gas leaking from a CO 2 storage reservoir at a near surface formation comprising: obtaining one or more surface or near surface geological samples; measuring a CO 2 , an O 2 , a CH 4 , and an N 2 level from the surface or near surface geological sample; determining the water vapor content at or above the surface or near surface geological samples; normalizing the gas mixture of the CO 2 , the O 2 , the CH 4 , the N 2 and the water vapor content to 100% by volume or 1 atmospheric total pressure; determining: a ratio of CO 2 versus N 2 ; and a ratio of CO 2 to N 2 , wherein if the ratio is greater than that produced by a natural source of deep gas CO 2 or deep gas methane oxidizing to CO 2 , the ratio is indicative of gas leaking from a CO 2 storage reservoir.
Abstract:
The invention relates to a system for monitoring an underground formation containing a least one gas (14), that comprises at least one device provided with a gas tapping means (1) buried in the ground, a means for transferring the gas between said tapping means (1) and a means for controlling a gas leak positioned at the surface and adapted for measuring at least one of the following parameters: the flow of the tapped gas, the composition of the tapped gas. The invention also relates to a method implementing said system.
Abstract:
L'invention concerne un système de surveillance d'une formation souterraine contenant au moins un gaz (14), comportant au moins un dispositif muni de moyens de captage (1) du gaz, lesdits moyens de captage étant enfouis dans le sol, des moyens de transfert de gaz entre lesdits moyens de captage (1 ) et des moyens de contrôle d'une fuite de gaz positionnés en surface et adaptés à mesurer au moins un des paramètres suivants : le flux du gaz capté, la composition du gaz capté. L'invention concerne également une méthode mettant en oeuvre ce système.
Abstract:
A gas sensor is provided for detecting one or more gases in a gas sample. The gas sensor includes a substrate, a solid electrolyte layer including lanthanum oxide for sensing carbon dioxide, a heating element thermally coupled to the solid electrolyte layer, and a controller coupled to the heating element and the solid electrolyte layer. The controller heats the heating element so that the solid electrolyte layer reaches an operating temperature. Methods of sensing carbon dioxide and humidity are also disclosed.
Abstract:
A method of measuring a rate of change of carbon dioxide concentration in recirculated air of an engine, is disclosed. The method includes installing a conductive sample tube into an engine's pre-combustion/air-mixing chamber, and installing a carbon dioxide sensor, remote from the chamber, to measure relative concentrations of carbon dioxide. The method may also be used to measure nitrogen oxide exhaust gas levels.
Abstract:
A sensor for monitoring CO 2 in a fluid regardless of the phase properties of the fluid, i.e ., regardless of whether the fluid contacting the window is a liquid water-based phase, a liquid oil-based phase, a mixture of liquid water and liquid oil-based phases, or a gas phase. The sensor includes an internal reflection window for contacting with the fluid. A mid-infrared light source directs a beam of mid-infrared radiation into the window and the beam is internal reflected at an interface between the window and the fluid. The reflected beam is passed through three narrow bandpass filters which preferentially transmit mid-infrared radiation over bands of wavelengths corresponding to absorbance peaks of water, oil and CO 2 . The amount of CO 2 is determined from the intensities of the mid-infrared radiation passing through the three filters
Abstract:
A gas sensor (200) comprises a cavity (214) and is configured to sense at least one of a molar mass, a density and a viscosity of a gas mixture in the cavity (214). Moreover, various exemplary embodiments relate to a device to measure carbon dioxide (CO 2 ) levels, including a first oscillator group (520) comprising a first sensor (250) to measure air pressure, where the first sensor (250) comprises a first sealed membrane (252), and where the first sealed membrane (252) overlays a sealed first cavity (258); a second oscillator group (522) including a second sensor (200) to measure the resonance frequency (f2) of a second unsealed oscillating membrane (210), and where the second unsealed membrane (210) overlays a second cavity (214) in contact with the air outside of the second sensor (200).
Abstract:
A method for determining emissions in an exhaust plume (11) produced by a combustion engine of a vessel (10) during cruise of the vessel (10), said emissions comprising the presence or concentration of carbon dioxide (C0 2 ) and/or sulphur dioxide (S0 2 ) and/or the count and size of particles. The position and distribution of the exhaust plume (11) is determined or estimated on the basis of the position, bearing and speed of the vessel (10) and further on the basis of meteorological data, such as wind direction and speed. An unmanned aerial vehicle (UAV) (12), i.e. a so-called drone, is controlled to fly through the plume (11) to make measurements of exhaust emissions of the vessel (10).
Abstract:
Capteur optique d'espèces chimiques comportant : - une source fluorescente de rayonnement infrarouge incohérent (3), comprenant une matrice en verre de chalcogénure dopée par des ions de terre rare couplée ô une source de pompage par une première fibre optique (2); et - au moins un détecteur de rayonnement infrarouge (5) pourvu d'un dispositif de sélection spectrale (50) et agencé pour détecter le rayonnement émis par ladite source fluorescente et ayant traversé une zone de détection (6), ledit détecteur comprenant un élément fluorescent (510) formé par une matrice en verre de chalcogénure dopé par des ions de terre rare, couplée ô une deuxième source de pompage (530) par l'intermédiaire d'une deuxième fibre optique (520). Utilisation d'un tel capteur pour la détection différentielle d'une espèce chimique, et en particulier de CO2.
Abstract:
Die Erfindung betrifft ein Verfahren zur Messung des 13 CO 2 / 12 CO 2 -Verhältnisses in der Atemluft intubierter Probanden mittels der nichtdispersiven Infrarotspektroskopie. Das Wesen des erfindungsgemässen Verfahrens besteht darin, das ausgeatmete Kohlendioxid durch Kühlung und/oder durch Sorption aus der Atemluft abzuscheiden und anschliessend zu verdampfen, zu desublimieren bzw. zu desorbieren und einem Gas beizumischen, dessen Zusammensetzung etwa derjenigen normaler Atemluft entspricht. Bei geeigneter Wahl des Mischungsverhältnisses der beiden Gase resultieren Gase, deren stoffliche Zusammensetzung derjenigen normaler Atemluft entspricht, wie sie auch bei der Kalibrierung von Geräten zur nichtdispersiven Infrarotspektroskopie zur Anwendung kommen. Das wichtigste Anwendungsgebiet der Erfindung ist die Durchführung von 13 C-Atemtests zur Kontrolle des Stoffwechsels von Patienten auf Intensivstationen, ohne dass die Messgenauigkeit durch die hohen Sauerstoffgehalte der den Patienten zugeführten Luft beeinträchtigt wird.