Abstract:
An intraluminal stent comprising a helical arrangement of elements defined by a successive series of substantially straight struts connected by apex sections alternately pointing in the opposite directions, wherein at least one apex section comprises two struts attached thereto with a length ratio about 1:2.
Abstract:
An intraluminal stent comprising a helical arrangement of elements defined by a successive series of substantially straight struts connected by apex sections alternately pointing in the opposite directions, wherein at least one apex section comprises two struts attached thereto with a length ratio about 1:2.
Abstract:
A mitral valve repair system comprises a guide catheter having a proximal end, a distal end, and at least one internal lumen formed therein, a therapy catheter capable of applying a suture to the tissue, and a fastener catheter capable of attaching a fastener to the suture. The therapy catheter and the fastener catheter are capable of traversing the internal lumen of the guide catheter. The mitral valve is repaired by advancing the catheter through the guide catheter, stabilizing a first leaflet with the therapy catheter, deploying a first suture into the stabilized first leaflet, disengaging the first leaflet from the therapy catheter while leaving the first suture attached thereto, stabilizing a second leaflet with the therapy catheter, deploying a second suture into the second leaflet, disengaging the second leaflet from the therapy catheter while leaving the second suture attached thereto, and joining the first and second leaflets by reducing the distance between the first and second sutures.
Abstract:
A mitral valve repair system comprises a guide catheter having a proximal end, a distal end, and at least one internal lumen formed therein, a therapy catheter capable of applying a suture to the tissue, and a fastener catheter capable of attaching a fastener to the suture. The therapy catheter and the fastener catheter are capable of traversing the internal lumen of the guide catheter. The mitral valve is repaired by advancing the catheter through the guide catheter, stabilizing a first leaflet with the therapy catheter, deploying a first suture into the stabilized first leaflet, disengaging the first leaflet from the therapy catheter while leaving the first suture attached thereto, stabilizing a second leaflet with the therapy catheter, deploying a second suture into the second leaflet, disengaging the second leaflet from the therapy catheter while leaving the second suture attached thereto, and joining the first and second leaflets by reducing the distance between the first and second sutures.
Abstract:
The present disclosure relates to a gastrointestinal delivery device of a dressing, where the delivery device is capable of fitting through a narrow channel before expanding and applying the dressing. The gastrointestinal delivery device may be used in all gastrointestinal bleeding applications and can be used with a biocompatible, foldable, thin profile, chitosan dressing. Various aspects of the device and its uses are provided herein.
Abstract:
The present invention relates to a dissolution resistant, biocompatible, foldable, thin profile, low mass and high surface area, chitosan dressing, optionally modified with iron, and suitable for treating bleeding in a physiological environment, e.g. gastrointestinal tract. The characteristics and structures of the chitosan dressing are provided. Devices and systems for delivery of dressing to a target tissue site are provided. Methods of making and using the chitosan dressing are also provided.
Abstract:
Systems, devices, methods, etc., comprising radial pressure devices applied to the exterior of anatomical structures such as blood vessels, typically for inhibition and/or treatment of aortic aneurysms, as well as methods of making and deploying such systems and devices, etc. The devices, etc., generally comprise one or more exovascular cuffs for generating desirable mechanical forces, and may additionally comprise body structures for covering, containing or treating tissues. Also provided are other systems and devices for fixing the devices discussed herein or other implantable devices, typically used in conjunction with such devices, to the vessels. The devices, etc., may be deployed by open or minimally invasive techniques, including translumenal, exovascular and endovascular deployment methods.
Abstract:
The present invention is directed to various systems for repairing tissue within the heart of a patient. The mitral valve repair system of the present invention comprises a guide catheter having a proximal end, a distal end, and at least one internal lumen formed therein, a therapy catheter capable of applying a suture to the tissue, and a fastener catheter capable of attaching a fastener to the suture. The therapy catheter and the fastener catheter are capable of traversing the internal lumen of the guide catheter. In addition, the present invention discloses various methods for repairing tissue within the heart of the patient. In one embodiment, the method of repairing heart valve tissue includes advancing a guide catheter through a circulatory pathway to a location in the heart proximate to a heart valve, advancing a therapy catheter through the guide catheter to the heart valve, stabilizing a first leaflet with the therapy catheter, deploying a first suture into the stabilized first leaflet, disengaging the first leaflet from the therapy catheter while leaving the first suture attached thereto, stabilizing a second leaflet with the therapy catheter, deploying a second suture into the second leaflet, disengaging the second leaflet from the therapy catheter while leaving the second suture attached thereto, and joining the first and second leaflets by reducing the distance between the first and second sutures.