Abstract:
Improved embolism protection devices comprises fibers that can have one configuration for delivery of the device and a second configuration in which the device is deployed for filtering of flow within a vessel. In some embodiments, the fibers can be connected to a fiber support, which is connected to an actuating element. The actuating element controls the transition from the delivery configuration to the deployed configuration. The embolism protection device can comprise a guidewire. The fibers can be attached at one end to a fiber support structure and at another end to the guidewire. A hypotube can be attached to the proximal end of the fibers while the guidewire is attached at the distal end of the fibers with the guidewire extending within a central channel of the hypotube. The hypotube can be used to guide the delivery of treatment structures, such as a balloon and/or a stent.
Abstract:
Methods for the removal of an embolism protection device use aspiration during the drawing of the embolism protection device into the catheter. Generally, the embolism protection device comprises a three dimensional filtering matrix that provides improved filtering without blocking the flow through the patient's vessel. In some embodiments, the embolism protection device can be actuated between a deployed configuration and a removal configuration with a reduced area across the cross section of the vessel lumen. The embolism protection device in the removal configuration can be drawn within the aspiration catheter. The aspiration catheter can have a distal portion with an expanded compartment with an average diameter at least about 20 percent larger than the average diameter of the shaft of the catheter within about 10 centimeters of the expanded compartment. In a rapid exchange version, the rapid exchange segment can have a length of at least about 10 centimeters.
Abstract:
An integrated guiding device has a tube and a corewire within the tube and a torque coupler. The torque coupler can couple the rotational motion of the tube with the rotational motion of the corewire. The wire can be moved longitudinally at least some amount relative to the tube. The device can further comprise a functional medical structure, such as an embolism protection structure. The device can be used in medical procedures, such as less invasive procedures within the cardiovascular system. Improved fiber based embolism protection devices comprise fiber bundles that are twisted prior to delivery.
Abstract:
Methods for the removal of an embolism protection device use aspiration during the drawing of the embolism protection device into the catheter. Generally, the embolism protection device comprises a three dimensional filtering matrix that provides improved filtering without blocking the flow through the patient's vessel. In some embodiments, the embolism protection device can be actuated between a deployed configuration and a removal configuration with a reduced area across the cross section of the vessel lumen. The embolism protection device in the removal configuration can be drawn within the aspiration catheter. The aspiration catheter can have a distal portion with an expanded compartment with an average diameter at least about 20 percent larger than the average diameter of the shaft of the catheter within about 10 centimeters of the expanded compartment. In a rapid exchange version, the rapid exchange segment can have a length of at least about 10 centimeters.
Abstract:
Improved embolism protection devices comprises fibers that can have one configuration for delivery of the device and a second configuration in which the device is deployed for filtering of flow within a vessel. In some embodiments, the fibers can be connected to a fiber support, which is connected to an actuating element. The actuating element controls the transition from the delivery configuration to the deployed configuration. The embolism protection device can comprise a guidewire. The fibers can be attached at one end to a fiber support structure and at another end to the guidewire. A hypotube can be attached to the proximal end of the fibers while the guidewire is attached at the distal end of the fibers with the guidewire extending within a central channel of the hypotube. The hypotube can be used to guide the delivery of treatment structures, such as a balloon and/or a stent.
Abstract:
A catheter has an elongated catheter shaft adapted for introduction into a body passageway of a patient. At least one optical fiber extends through the catheter shaft. The optical fiber has a distal end positioned at or near a distal end of the catheter for illuminating tissue and receiving light energy from tissue at the location of the distal end of the tip. A distal region of the catheter includes a deformed portion having a crest offset from a longitudinal axis of the catheter shaft. A distal tip of the optical fiber is positioned at the crest to increases the likelihood of the distal tip contacting tissue of a wall of the body passageway.
Abstract:
An integrated guiding device has a tube and a corewire within the tube and a torque coupler. The torque coupler can couple the rotational motion of the tube with the rotational motion of the corewire. The wire can be moved longitudinally at least some amount relative to the tube. The device can further comprise a functional medical structure, such as an embolism protection structure. The device can be used in medical procedures, such as less invasive procedures within the cardiovascular system. Improved fiber based embolism protection devices comprise fiber bundles that are twisted prior to delivery.
Abstract:
A catheter has an elongated catheter shaft adapted for introduction into a body passageway of a patient. At least one optical fiber extends through the catheter shaft. The optical fiber has a distal end positioned at or near a distal end of the catheter for illuminating tissue and receiving light energy from tissue at the location of the distal end of the tip. A distal region of the catheter includes a deformed portion having a crest offset from a longitudinal axis of the catheter shaft. A distal tip of the optical fiber is positioned at the crest to increases the likelihood of the distal tip contacting tissue of a wall of the body passageway.