Abstract:
A self-configuring mobile telecommunication base station is disclosed. A communication interface is configured to connect to an access network other than a mobile telecommunication network with which the base station is associated. A processor coupled to the communication interface is configured to establish a connection, at least in part via the access network, to an element associated with the mobile telecommunication network; receive via the access network an initialization data; and use the initialization data to configure the base station to provide access to mobile telecommunication services at least in part using a resource determined based at least in part on the initialization data.
Abstract:
A system for transferring data includes an interface configured to receive data that is sent via a first link, and a processor coupled to the interface. The processor is configured to: receive data that is sent via a first link; determine whether there is discontinuity in the received data, the determination being based at least in part on information included in the received data; in the event that the received data includes a discontinuity, generate replacement data that repairs the discontinuity; and transmit at least a portion of replacement data to a second link such that a synchronization requirement associated with the second link is fulfilled.
Abstract:
Facilitating use of a restricted base transceiver station is disclosed. To a first set of subscribers associated with a mobile network operator, access to a mobile network is provided via base transceiver stations (102, 104, 106) associated with a first mobile network identifier associated with the mobile network operator but not via base transceiver stations (302) associated with a second mobile network identifier associated with the mobile network operator. To each of a second set of subscribers associated with the mobile network operator, access to the mobile network is provided via a corresponding subset of a set of base transceiver stations (302) associated with the second mobile network identifier, the subset including for each subscriber in the second set one or more base transceiver stations with respect to which that subscriber is an authorized user.
Abstract:
Using radio frequency sensing to detecting that a cellular base station has been moved to a new geographic location is disclosed. A determination is made that a sensed radio frequency environment does not match a stored baseline. It is concluded, based at least in part on the determination that a sensed radio frequency environment does not match a stored baseline, that the cellular base station has been moved.
Abstract:
Determining a geographic location of a cellular base station is disclosed. In some embodiments, a set of measurement data that includes for each of a plurality of signals received at the base station a corresponding measurement data is determined. The set of measurement data is used to determine the geographic location of the base station. In some embodiments, a set of measurement data is received. The received measurement data includes for each of a plurality of location measurement units at which a signal transmitted by the base station is received a corresponding measurement data associated with the signal. The set of measurement data is used to determine the geographic location of the base station.
Abstract:
Managing packet data network jitter is disclosed. A first call data associated with a mobile network communication session is received. A second call data that is older than the first call data is dropped from a buffer if required to make room in the buffer for the first call data.
Abstract:
A phase locked loop with phase clipping and/or resynchronization is disclosed. A reference signal is compared to a feedback signal derived at least in part from an output signal of an oscillator to determine a phase error. A magnitude of at least one of the phase error and a change in the phase error, if required, is clipped to provide at least one of a clipped phase error that has a clipped magnitude that does not exceed a prescribed maximum phase error and a clipped change in phase error that has a clipped magnitude that does not exceed a prescribed maximum change in phase error. If a resynchronization triggering event is detected, the oscillator is resynchronized with the reference signal.
Abstract:
Enabling a standard cellular handset to be used to access a core mobile network via a generic access network is disclosed. A communication between a generic access network element and the core mobile network is intercepted. A modified version of the communication is generated. The modified communication is forwarded.
Abstract:
Using radio frequency sensing to manage a mobile network resource is disclosed. A radio frequency environment is sensed to detect one or more base transceiver stations. A resource assignment, such as a frequency or channel assignment, is determined based at least in part on the sensed radio frequency environment.
Abstract:
Providing a frequency reference to a mobile telecommunications base station is disclosed. A radio frequency signal that includes a periodic component having a known frequency is received. A frequency reference is derived from the received radio signal, based at least in part on the periodic component. The frequency reference is used to transmit from the base station at an assigned frequency.