Abstract:
Die Erfindung bezieht sich auf eine Legierung, insbesondere für eine Gleitschicht, bestehend aus Elementen die eine Matrix (2) und zumindest eine Weichphase (3) und/oder eine Hartphase (5) ausbilden, wobei die Weichphasenelemente und/oder die Hartphasenelemente mit dem Matrixelement eine feste Lösung oder eine Verbindung bilden. Die Weichphase (3) und/oder die Hartphase (5) liegt in der Matrix (2) dispergiert vor und ist nur im Bereich der Phasengrenze (4) der Matrix (2) zur Weichphase (3) und/oder zur Hartphase (5) die feste Lösung oder Verbindung ausgebildet.
Abstract:
The invention relates to an alloy, in particular, for a bearing coating, made from elements forming a matrix (2) and at least one soft phase (3) and/or a hard phase (5), whereby the soft phase elements and/or the hard phase elements form a solid solution or a compound with said matrix element. The soft phase (3) and/or the hard phase (5) is dispersed in the matrix (2) and the solid solution or compound is only formed in the boundary region (4) of the matrix (2) with the soft phase (3) and/or the hard phase (5).
Abstract:
Described is a process for producing a sliding bearing with a copper-based Babbit metal lining (1) that has at least 10 wt % softer metal intercalations (3) in a copper or copper-alloy matrix (2) and with a tin-containing, preferably aluminum-based working surface (7), with first a diffusion barrier layer (6) being deposited on the Babbit metal lining and then the working surface being physically deposited in a vacuum on the diffusion barrier layer. To ensure advantageous working properties the invention proposes that prior to deposition of the diffusion barrier layer the surface of the Babbit metal lining receiving the diffusion barrier layer is subjected to a chemical etching process until this produces in the region of the softer intercalations (3) depressions in the surface of the copper or copper-alloy matrix (2) to a depth of at least one tenth of the thickness of the working surface (7) deposited afterward, but at least 2 mu m.
Abstract:
Die Erfindung bezieht sich auf eine Transportrolle mit dieser zugeordneter Antriebseinheit, wobei die Transportrolle (1) eine Mantelfläche (2) aus einem elastischen Material (18, 19, 20) aufweist. Die Transportrolle (1) rotiert um eine Drehachse (3) und ist im Gehäuse (17) der Antriebseinheit aufgenommen. Die Transportrolle (1) enthält mindestens einen farbigen, in der Mantelfläche (2) sichtbaren Markierkörper (11) aus einem elastischen Material, dessen Abnutzungseigenschaften denjenigen entsprechen, die das elastische Material (18, 19, 20) der Mantelfläche (2) aufweist.
Abstract:
The invention relates to a method for depositing a metallic layer on a polymer surface of a workpiece. After seeding with a catalytically active platinum metal or a platinum metal compound, a coating metal is autocatalytically separated from an aqueous solution onto said surface, without external current input. Next, at least one further layer is deposited on the preliminary layer, preferably electrolytically and with external current input. According to the invention, to obtain advantageous construction conditions centres of a Lewis acid or Lewis base are enriched on the polymer surface to be coated by means of vacuum plasma processing with a plasma gas suitable for the polymer used, after which the polymer surface is seeded under vacuum with the platinum metal or platinum metal compound, using a further plasma gas which contains an evaporated platinum metal or platinum metal compound designed for nucleophilic or electrophilic reaction with the Lewis acids or Lewis bases.
Abstract:
Described is a copper-based sliding surface consisting of a copper or copper-alloy matrix with at least 10 wt % softer metal intercalations that form particles which, viewed in a plane parallel to the surface, form noncontiguous sections. To ensure both high-level strength and good tribological properties the invention proposes that when the particle sections beginning with the smallest section are summed in ascending order of area, the section (F50) of any particle that enlarges the subtotal of the lesser-area sections to 50 % of the final total equals at most ten times the section (F5) of the particle enlarging the subtotal to 5 % of the final total, but at least one fifth of the largest single section (F100).