Abstract:
Techniques are described which provide mechanisms for dual-homing an access ring for virtual private wire service (VPWS) Ethernet line (E-Line) services. The mechanism may provide resiliency against access ring failures and offer a restoration time of 50 msec upon failure. A method to provide such resiliency may generally include determining, at a first ring port of an access node, a ring failure in an Ethernet ring. Upon determining the first ring port of the access node is not situated on a same side of the Ethernet ring as a node designated as a ring protection link (RPL) owner, a message is transmitted on a second ring port of the access node towards a provider edge (PE) node. The message is used to activate pseudowires (PWs) at the PE node for virtual local area networks (VLANs) of the access node.
Abstract:
In one embodiment, a network device in a set of network devices obtains a pseudowire label for a Provider Edge (PE) device, where the pseudowire label corresponds to a Virtual Local Area Network (VLAN) on the PE device. In addition, the network device obtains a set of one or more MAC addresses reachable via the PE device, wherein the set of network devices support Ethernet Virtual Private Network (E-VPN) and are in the same redundancy group such that the set of network devices are coupled to the same customer edge device. The network device stores the pseudowire label in association with the set of one or more MAC addresses. The network device uses the pseudowire label to encapsulate traffic associated with the VLAN that is received from the customer edge device and destined to the set of MAC addresses reachable via the PE device.
Abstract:
A method and system for redundancy in Ethernet Virtual Connections (EVCs) are disclosed. In one embodiment, a method includes transmitting continuity check messages from a node in an Ethernet Virtual Connection connecting at least one root node and a plurality of leaf nodes in a point-to-multipoint or multipoint-to-multipoint connection, identifying a failure in a primary path between the root node and the leaf nodes, switching to a backup path, and advertising the switching to the backup path to at least one node.
Abstract:
In one embodiment, a method includes receiving, by a provider edge (PE) device, a transport layer status message indicative of a defect on a pseudowire (PW) running across a core of a service provider (SP) network. The status message is translated to a service layer message indicative of the defect. The service layer message is then transmitted across an access domain of the SP network.
Abstract:
A VPLS model is implemented in a network-facing provider edge (n-PE) device configured to receive a packet from an access network the packet having a first Virtual Local Area Network (VLAN) tag of a first predetermined bit length The n-PE device mapping the service instance identifier of the first VLAN tag into a second VLAN tag of a second predetermined bit length greater than the first predetermined bit length, the second VLAN tag identifying a Virtual Private LAN Service (VPLS) instance The n-PE device then sends the packet with the second VLAN tag across a service provider (SP) core network via a pseudowire (PW) that functions as a logical link to another PE device
Abstract:
A method of operation for a provider edge device of a core network includes receiving a customer frame from an access network; the customer frame having a first Virtual Local Area Network (VLAN) tag of a first predetermined bit length. The first VLAN tag including a service instance identifier. The service instance identifier of the first VLAN tag is then mapped into a second VLAN tag of a second predetermined bit length greater than the first predetermined bit length. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A VPLS model is implemented in a network-facing provider edge (n- PE) device configured to receive a packet from an access network; the packet having a first Virtual Local Area Network (VLAN) tag of a first predetermined bit length. The n-PE device mapping the service instance identifier of the first VLAN tag into a second VLAN tag of a second predetermined bit length greater than the first predetermined bit length, the second VLAN tag identifying a Virtual Private LAN Service (VPLS) instance. The n-PE device then sends the packet with the second VLAN tag across a service provider (SP) core network via a pseudowire (PW) that functions as a logical link to another PE device. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A method of operation for a provider edge device of a core network includes receiving a customer frame from an access network; the customer frame having a first Virtual Local Area Network (VLAN) tag of a first predetermined bit length. The first VLAN tag including a service instance identifier. The service instance identifier of the first VLAN tag is then mapped into a second VLAN tag of a second predetermined bit length greater than the first predetermined bit length. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A DSLAM aggregation topology VLAN bundling mechanism includes an edge device port that receives a packet from a Digital Subscriber Line Access Multiplexer (DSLAM) device, the packet including an inner Virtual Local Area Network (VLAN) tag that identifies a Digital Subscriber Line (DSL) subscriber. A processor of the edge device adds an outer VLAN tag to the packet, the outer VLAN tag identifying the DSLAM and a destination server coupled to an Ethernet access network. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
Identifying and forwarding traffic to/from Digital Subscriber Line Access Multiplex (DSLAM) devices and feature servers without ambiguity includes a user-facing provider edge (u-PE) device that receives a customer frame from a DSLAM device, the customer frame of a first format including a first virtual local area network (VLAN) tag of a first bit length. The first VLAN tag identifies a DSL subscriber. The customer frame is re-formatted by the u-PE device such that the first VLAN tag is mapped to a second VLAN tag of a second bit length greater than the first bit length, the second VLAN tag identifying a service instance of the Ethernet access network. The u-PE device encapsulating the customer frame inside a provider frame, with a provider source Media Access Control (MAC) address represents a MAC address associated with the DSLAM, and a provider destination MAC address represents a MAC address of a destination device.