Abstract:
A relatively high spectral bandwidth objective employed for use in imaging a specimen and method for imaging a specimen is provided. The objective comprises a lens group having at least one focusing lens configured to receive light energy and form an intermediate image, at least one field lens oriented to receive the intermediate image and provide intermediate light energy, and a Mangin mirror arrangement positioned to receive the intermediate light energy and apply light energy to the specimen. The objective may provide, in certain instances, a spectral bandwidth up to approximately 193 to 266 manometers and can provide numerical apertures in excess of 0.9. Elements are less than 100 millimeters in diameter and may fit within a standard microscope. The field lens may comprise more than one lens and may be formed of a material different from at least one other lens in the objective.
Abstract:
A system for use with a reduced size catadioptric objective is disclosed. The system including the reduced size objective includes various subsystems to allow enhanced imaging, the subsystems including illumination, imaging, autofocus, positioning, sensor, data acquisition, and data analysis. The objective may be employed with light energy having a wavelength in the range of approximately 190 nanometers through the infrared light range, and elements of the objective are less than 100 mm in diameter. The objective comprises a focusing lens group and at least one field lens oriented to receive focused light energy from the focusing lens group and provide intermediate light energy. The objective also includes a Mangin mirror arrangement. The design imparts controlled light energy with a numerical aperture in excess of 0.65 and up to approximately 0.90 to a specimen for imaging purposes, and the design may be employed in various environments.
Abstract:
Inspection of EUV patterned masks, blank masks, and patterned wafers generated by EUV patterned masks requires high magnification and a large field of view at the image plane. An EUV inspection system can include a light source directed to an inspected surface, a detector for detecting light deflected from the inspected surface, and an optic configuration for directing the light from the inspected surface to the detector. In particular, the detector can include a plurality of sensor modules. Additionally, the optic configuration can include a plurality of mirrors that provide magnification of at least 100X within an optical path less than 5 meters long. In one embodiment, the optical path is approximately 2-3 meters long.
Abstract:
A relatively high spectral bandwidth objective employed for use in imaging a specimen and method for imaging a specimen is provided. The objective comprises a lens group having at least one focusing lens configured to receive light energy and form an intermediate image, at least one field lens oriented to receive the intermediate image and provide intermediate light energy, and a Mangin mirror arrangement positioned to receive the intermediate light energy and apply light energy to the specimen. The objective may provide, in certain instances, a spectral bandwidth up to approximately 193 to 266 manometers and can provide numerical apertures in excess of 0.9. Elements are less than 100 millimeters in diameter and may fit within a standard microscope. The field lens may comprise more than one lens and may be formed of a material different from at least one other lens in the objective.
Abstract:
A catadioptric projection lens for imaging a pattern arranged in an object plane onto an image plane, preferably while creating a real intermediate image, including a catadioptric first lens section having a concave mirror and a physical beamsplitter having a beamsplitting surface, as well as a second lens section that is preferably refractive and follows the beamsplitter, between its object plane and image plane. Positive refractive power is arranged in an optical near-field of the object plane, which is arranged at a working distance from the first optical surface of the projection lens. The beamsplitter lies in the vicinity of low marginal-ray heights, which allows configuring projection lenses that are fully corrected for longitudinal chromatic aberration, while employing small quantities of materials, particularly those materials needed for fabricating their beamsplitters.
Abstract:
A system for multiple mode imaging is disclosed herein. The system is a catadioptric system preferably having an NA greater than 0.9, highly corrected for low and high order monochromatic aberrations. This system uses unique illumination entrances and can collect reflected, diffracted, and scattered light over a range of angles. The system includes a catadioptric group, focusing optics group, and tube lens group. The varifocal tube lens group can continuously change magnifications from 20 to 200x. Imaging modes include bright-field, full sky, ring dark-field, inverted ring dark-field, directional dark-field, double dark-field, Manhattan geometry, confocal bright-field, confocal dark-field, conoscopic, etc. Illumination can enter the catadioptric optical system using an auxiliary beamsplitter or mirror, or through the catadioptric group at any angle from 0 to 85 degrees from vertical.
Abstract:
A reduced size catadioptric inspection system employing a catadioptric objective and immersion substance is disclosed. The objective may be employed with light energy having a wavelength in the range of approximately 190 nanometers through the infrared light range, and can provide numerical apertures in excess of 0.9. Elements are less than 100 millimeters in diameter and may fit within a standard microscope. The objective comprises a focusing lens group, a field lens, a Mangin mirror arrangement, and an immersion substance or liquid between the Mangin mirror arrangement and the specimen. A variable focal length optical system for use with the objective in the catadioptric inspection system is also disclosed.
Abstract:
A system and method for inspection is disclosed. The design includes an objective employed for use with light energy having a wavelength in various ranges, including approximately 266 to 1000nm, 157nm through infrared, and other ranges. The objective comprises a focusing lens group (311) comprising at least one focusing lens (304) configured to receive light, a field lens (305) oriented to receive focused light energy from said focusing lens group (311) and provide intermediate light energy, and a Mangin mirror arrangement (312) positioned to receive the intermediate light energy from the field lens (305) and form controlled light energy. Each focusing lens has a reduced diameter, such as a diameter of less than approximately 100mm, and a maximum corrected field size of approximately 0.15mm. An immersion substance, such as oil, water, or silicone gel, may be employed prior to passing controlled light energy to the specimen (310) inspected.
Abstract:
A catadioptric projection lens for imaging a pattern arranged in an object plane onto an image plane while creating a real intermediate image, having a catadioptric first lens section having a concave mirror and a beam-deflection device, as well as a dioptric second lens section that follows the catadioptric lens section, between its object plane and image plane. The beam-deflection device has a first reflective surface for deflecting radiation coming from the object plane to the concave mirror. Positive refractive power is arranged following the first reflective surface, between the latter and the concave mirror, within an optical near-field of the object plane, within which the height of the principal ray of the outermost field point of radiation coming from the object exceeds the marginal-ray height. The intermediate image lies well ahead of a second reflective surface that is provided for the purpose of allowing arranging the object plane and image plane such that they will be parallel to one another. A lens is provided between the intermediate image and second reflective surface.
Abstract:
A system for multiple mode imaging is disclosed herein. The system is a catadioptric system preferably having an NA greater than 0.9, highly corrected for low and high order monochromatic aberrations. This system uses unique illumination entrances and can collect reflected, diffracted, and scattered light over a range of angles. The system includes a catadioptric group, focusing optics group, and tube lens group. The varifocal tube lens group can continuously change magnifications from 20 to 200x. Imaging modes include bright-field, full sky, ring dark-field, inverted ring dark-field, directional dark-field, double dark-field, Manhattan geometry, confocal bright-field, confocal dark-field, conoscopic, etc. Illumination can enter the catadioptric optical system using an auxiliary beamsplitter or mirror, or through the catadioptric group at any angle from 0 to 85 degrees from vertical.