Abstract:
Nanopatch antennas and related methods for enhancing and tailoring are disclosed. According to an aspect, an apparatus includes a conductive material defining a substantially planar surface. The apparatus also includes a conductive nanostructure defining a substantially planar surface. The conductive material and the conductive nanostructure are positioned such that the planar surface of the conductive material faces the planar surface of the conductive nanostructure, such that the planar surfaces are substantially parallel, and such that the planar surfaces are spaced by a selected distance. The apparatus also includes an optically-active material positioned between the planar surfaces.
Abstract:
Discrete-dipole methods and systems for applications to complementary metamaterials are disclosed. According to an aspect, a method includes identifying a discrete dipole interaction matrix for a plurality of discrete dipoles corresponding to a plurality of scattering elements of a surface scattering antenna.
Abstract:
Metamaterial devices and methods of using the same are disclosed. According to an aspect, an aperture for creating an electromagnetic field distribution includes a spatial field distribution. The aperture also includes a matrix with a set of standard characteristics, captured data, a field of view, a signal to noise ratio of captured data, a resolution of captured data, a contrast of captured data, a rate of data capture, and a quality of captured data.
Abstract:
An apparatus is described that selectively absorbs electromagnetic radiation. The apparatus includes a conducting surface, a dielectric layer formed on the conducting surface, and a plurality of conducting particles distributed on the dielectric layer. The dielectric layer can be formed from a material and a thickness selected to yield a specific absorption spectrum. Alternatively, the thickness or dielectric value of the material can change in response to an external stimulus, thereby changing the absorption spectrum.
Abstract:
Hot-rolled high-strength steel elongated structural members and method of making same are disclosed by hot-rolling high-strength steel having a specific chemical composition to provide structural units. The units are then welded together to provide structural members of desired geometrical configuration including a thin web with opposed thicker flanges extending therefrom to increase the load bearing capacity of the members.
Abstract:
A metamaterial waveguide structure is disclosed. In some approaches the metamaterial waveguide structure is compressed along an optical axis using transformation optics techniques. An example is a Rotman lens that is compressed by 27 percent along the optical axis while maintaining the beam steering range, gain and side lobe amplitudes over a broad frequency range. In some approaches the metamaterial waveguide structure includes a plurality of complementary metamaterial elements patterned on a conducting surface of the waveguide.
Abstract:
Complementary metamaterial elements provide an effective permittivity and/or permeability for surface structures and/or waveguide structures. The complementary metamaterial resonant elements may include Babinet complements of "split ring resonator" (SRR) and "electric LC" (ELC) metamaterial elements. In some approaches, the complementary metamaterial elements are embedded in the bounding surfaces of planar waveguides, e.g. to implement waveguide based gradient index lenses for beam steering/focusing devices, antenna array feed structures, etc..
Abstract:
A gradient index lens for microwave radiation. The lens includes a plurality of electric field coupled resonators wherein each resonator has a resonant frequency. The resonators are arranged in a planar array having spaced apart side edges and spaced apart top and bottom edges. The resonant frequency of the resonators varies between at least two of the spaced edges of the array in accordance with the desired properties of the lens.
Abstract:
Apparatuses and methods to inject chemical stimulants (284) to a production zone (102, 202) through a string of production tubing (110, 210) around a downhole obstruction are disclosed. The apparatuses and methods include deploying an anchor seal assembly (200) to a landing profile (120, 220) located within a string of production tubing (110, 210). The anchor seal assembly (200) is in communication with a surface station through an injection conduit (260, 264) and includes a bypass pathway (262) to inject various fluids to a zone below.
Abstract:
The application discloses a safety valve including a flapper valve and a packer assembly to be installed in a bore to isolate a first zone from a second zone. Preferably, the safety valve includes a hydraulic conduit bypassing the flapper valve to allow communication therethrough when the valve is closed. Furthermore, the safety valve preferably allows unobstructed passage of tools and fluids therethrough when the flapper valve is open. The application discloses a method to install a safety valve in an existing string of tubing by deploying a packer assembly having an integral safety valve.