Abstract:
Systems and methods for effecting bariatric procedures are disclosed. Each system includes an instrument, a control valve and, optionally, a suction controller. The instrument is in the form of an elongated, flexible sizing tube having a distal end portion including a plurality of apertures. The control valve enables suction to be applied to the patient's stomach via the apertures to drain gastric fluids and to bring adjacent portions of the patient's stomach into engagement with the sizing tube to provide a visually perceptible delineation line along which a portion of the stomach may be resected, sealed and tested.
Abstract:
Identification elements (e.g., tracking elements, tracing elements, locating elements, etc.) (22A, 100) are provided on various communication components (20, 24, 26, 28, 30, 32, 34, 35, 36, 40, 42, 48, 49, 60, 62, 64, 120) provided within a communication network such as a fiber optic network or a copper network. Fiber optic hubs 20 can be identified and/or managed. Data centers (110) with patch panels (120) can also be identified and/or managed. Example passive identification elements include bar codes (e.g., 2d barcodes) and radio frequency identification (RFID) tags. In certain embodiments, RFID tags and the bar codes can include network information included therein. In certain embodiments, bar codes can be used to direct technicians to network links at which additional information stored elsewhere is provided. In certain embodiments, identification elements can be provided on communication components through an application downloaded to a mobile device by scanning the bar code. Such application on the mobile device can then be used to manage the network connections, change the network connections, or check the status of the network connections. Multiple mobile devices can be used and synchronized together with a central application, website or network. One example bar code useful for reading information from a network device and linking to a management application is a QR code (100).
Abstract:
A method including providing a first content item for consumption, the first content item having a content placement opportunity at which a second content item can be consumed, dividing the first content item into a plurality of chunks, the placement opportunity being temporally disposed after a first one of the chunks and/or before a second one of the chunks, after a first point where the first chunk is operative to finish being rendered and/or before a second point where the second chunk is operative to start being rendered, and encoding the chunks yielding a plurality of encoded chunks, wherein the encoding includes performing, for each one of the chunks of the first content item encoding the audio/video frames of the one chunk at a first audio/video quality, and repeating encoding of the audio/video frames of the one chunk at a second audio/video quality. Related apparatus and methods are also described.
Abstract:
A spool assembly includes a drum having a first axial end and an oppositely disposed second axial end. The drum includes an inner surface that defines a bore that extends through the first and second axial ends. A drum support is disposed in the bore of the drum. The drum support includes a first end and an oppositely disposed second end. The drum support has an exterior surface. The exterior surface of the drum support and the inner surface of the drum define a plurality of channels. A first flange is engaged to the first end of the drum support. A second flange is engaged to the second end of the drum support.
Abstract:
A method for installing a drop terminal includes providing a drop terminal assembly including a drop terminal having an exterior surface, a first cable spool engaged to the exterior surface of the drop terminal, a second cable spool engaged to the first cable spool and a fiber optic cable having a first length disposed about the first cable spool and a second length disposed about the second cable spool. The drop terminal assembly is rotated to deploy the second length of fiber optic cable. The second cable spool is removed. The first length of fiber optic cable is bundled. The bundled first length of fiber optic cable is removed from the first cable spool. The drop terminal is removed from the first cable spool. The drop terminal is mounted to a structure.
Abstract:
A fiber optic and electrical connection system includes a fiber optic cable, a ruggedized fiber optic connector, a ruggedized fiber optic adapter, and a fiber optic enclosure. The cable includes one or more electrically conducting strength members. The connector, the adapter, and the enclosure each have one or more electrical conductors. The cable is terminated by the connector with the conductors of the connector in electrical communication with the strength members. The conductors of the connector electrically contact the conductors of the adapter when the connector and the adapter are mechanically connected. And, the conductors of the adapter electrically contact the conductors of the enclosure when the adapter is mounted on the enclosure.
Abstract:
A fiber optic network includes a main cable with a breakout location. A tether optically connected to the main cable at the breakout location where the tether includes a single fiber connector. The single fiber connector optically coupled to an input on an input end of an optical splitter which is disposed in an interior cavity of a fiber drop terminal. Each of a plurality of outputs disposed on an output end of the optical splitter is optically coupled to an input of a distinct splitter disposed in an inner cavity of a distinct drop terminal.
Abstract:
A fiber optic enclosure includes a housing (23) and a cable spool assembly (25) disposed on an exterior surface of the housing. The cable spool assembly has a first tear-away end (55a) and a second tear-away end (55b). The first and second tear-away ends include at least one area of weakness (85) extending from an inner diameter of the cable spool assembly to an outer diameter of the cable spool assembly. A mounting plate (27) is rotationally engaged with the cable spool assembly (25) such that the cable spool assembly and the housing (23) selectively and unitarily rotate about an axis of the mounting plate.
Abstract:
A telecommunications assembly including a housing and a plurality of modules mounted within the housing. The modules includes a rear face in which is mounted at least one fiber optic connector. Within an interior of the housing are positioned at least one fiber optic adapters. Inserting the module through a front opening of the housing at a mounting location positions the connector of the module for insertion into and mating with the adapter of the housing. The adapters within the interior of the housing are mounted to a removable holder. A method of mounting a telecommunications module within a chassis.
Abstract:
A power supply (1) for a load in the form of a PCMCIA card (2) has an onboard GPRS class (10) module (not shown). The module, and therefore card (2), demands a load current i load that has an average value over time and periodic instantaneous peak values ( i pea k ) that are significantly higher than the average value. Power supply (1) includes a pair of input terminals (3) for connecting with a power source in the form of a regulated power supply (4) that is contained within a personal computer (not shown). Supply (4) supplies a source current i input that is less than a predetermined current limit specified for the supply and which is less than the peak load current. A pair of output terminals (5) is electrically connected with terminals (3) and card (2). A supercapacitor device in the form of a single supercapacitor (6) is in parallel with terminals (3, 5) for allowing the load to be supplied the peak load current while maintaining the source current at less than the predetermined current limit.