Abstract:
A substrate shipping container suitable for shipping solar cells, substrate wafers, or other suitable media. In some embodiments, the readily constructed container is made up of two identical container portions, each container portion having a horizontally-disposed base member and two adjacent vertically-disposed side members constructed of impact- absorbing double walls. The two container portions are shaped to be coupled using integrally formed tabs and slots located about the perimeter of the container portions. The horizontally-disposed base member of each container portion is equipped with a plurality of integrally formed pads. These pads serve as cushions to provide shock absorption in the vertical direction to substrates that are stacked between these members. Embodiments may further be comprised of molded polymers or pulp.
Abstract:
A wafer container utilizes a rigid polymer tubular tower with slots and a "getter" therein for absorbing and filtering moisture and vapors within the wafer container. The tower preferably utilizes a purge grommet at the base of the container and may have a check valve therein to control the flow direction of gas (including air) into and out of the container and with respect to the tower. The tower is sealingly connected with the grommet. The tower may have a getter media piece rolled in an elongate circular fashion forming or shaped as a tube and disposed within the tower and may have axially extending. The media can provide active and/or passive filtration as well as having capabilities to be recharged. Front opening wafer containers for 300mm sized wafers generally have a pair of recesses on each of the left and right side in the inside rear of the container portions. These recesses are preferably utilized for elongate towers, such towers extending substantially from a bottom wafer position to a top wafer position. In alternative embodiment, a tubular shape of getter material is exposed within the front opening container without containment of the getter other than at the ends. The tubular getter form is preferably supported at discrete locations to maximize exposure to the internal container environment. A blocker member can selectively close the apertures. An elastomeric cap can facilitate securement of the tubular component in the container portion.
Abstract:
A substrate kinematic coupling or guide plate for a substrate carrier having textured or patterned surfaces at the points of contact to reduce frictional forces generated between automated processing equipment and the kinematic coupling. The textured surface reduces the contact area between the processing equipment and the contact portion of the kinematic coupling, thereby reducing the resultant frictional force. By reducing the frictional force, the substrate carrier more readily settles on the mounting pins of the processing equipment, thus avoiding intolerable height and angular deviations during automated access to the substrates. Textures include, but are not limited to, a knurl pattern, ridges running laterally along the contact portions, and ridges running longitudinally along the contact portions. The textures may be formed by a blow molding, injection molding or in an overmolding process, or by a machining or imprinting process.
Abstract:
A substrate carrier to dissipate electrostatic charge has a conductive grid or network overmolded in a substantially integral container. The grid is electrically connected to an underlying and grounded saddle. The carrier may further include substantially transparent side walls and electrically conductive shelves to retain stored substrates in a generally axial alignment.
Abstract:
The invention is directed to a two piece shipping package such as a substrate shipping container that is used to ship solar cells or other substrate wafers and locking device for use therewith. One or more latching members having permanent and multi-use tab features are used to join the components of a readily constructed container. The container is generally made up of two identical container portions, each container portion having a horizontally-disposed base member and two vertically disposed side members constructed of impact-absorbing double walls. The locking device provides an integrated locking snap connector that holds two container portions together at opposing corners, the containers of which are generally shaped for being readily coupled with one another in reversed and inverted orientations.
Abstract:
A substrate shipping container suitable for shipping solar cells, substrate wafers, or other suitable media. In some embodiments, the readily constructed container is made up of two identical container portions, each container portion having a horizontally-disposed base member and two adjacent vertically-disposed side members constructed of impact- absorbing double walls. The two container portions are shaped to be coupled using integrally formed tabs and slots located about the perimeter of the container portions. The horizontally-disposed base member of each container portion is equipped with a matrix of integrally formed pads. These pads serve as cushions to provide shock absorption in the vertical (i.e. "z") direction to substrates that are stacked between these members. Embodiments may further be comprised of molded pulp or bulrush fibers.
Abstract:
A wafer container utilizes a rigid polymer tubular tower with slots and a "getter" therein for absorbing and filtering moisture and vapors within the wafer container. The tower preferably utilizes a purge grommet at the base of the container and may have a check valve therein to control the flow direction of gas (including air) into and out of the container and with respect to the tower. The tower is sealingly connected with the grommet. The tower may have a getter media piece rolled in an elongate circular fashion forming or shaped as a tube and disposed within the tower and may have axially extending. The media can provide active and/or passive filtration as well as having capabilities to be recharged. Front opening wafer containers for 300mm sized wafers generally have a pair of recesses on each of the left and right side in the inside rear of the container portions. These recesses are preferably utilized for elongate towers, such towers extending substantially from a bottom wafer position to a top wafer position. In alternative embodiment, a tubular shape of getter material is exposed within the front opening container without containment of the getter other than at the ends. The tubular getter form is preferably supported at discrete locations to maximize exposure to the internal container environment. A blocker member can selectively close the apertures. An elastomeric cap can facilitate securement of the tubular component in the container portion.
Abstract:
A wafer carrier door having an inner door portion and an outer door portion. The inner door portion has a substantially continuous inner surface. The outer door portion extends over at least a portion of the inner door portion. The outer door portion has a plurality of apertures formed therein. The outer door portion is attached to the inner door portion.
Abstract:
A carrier for transporting silicon semiconductor wafers during semiconductor wafer processing operations including an enclosure, a door and a flange structured to interface with a machine so that the carrier can be lifted by the machine. A lift saddle connects the flange to the container so that the load on the flange is transferred to a part of the enclosure other than the top of the enclosure to prevent distortion of the enclosure to maintaining seal integrity between the enclosure and the door.
Abstract:
A container for holding a single wafer includes a door with a latching mechanism having a cam with a pair of opposing wings extending laterally therefrom. The cam is selectively rotatably shiftable between a first favored position wherein the wings are completely within the door enclosure to enable the door to be engaged and disengaged from the door frame, and a second favored position wherein the wings extend laterally outward from the door enclosure so as to engage in the latch recesses in the door frame when the door is engaged in the door frame. The cam wings may include a ramped portion thereon for drawing the door into closer engagement in the door frame when the cam is rotated from the first favored position to the second favored position. Also, the latching mechanism may further include a spring disposed to provide a biasing force for urging the latching mechanism toward each of the first and second favored positions, and soft-stop dampening springs for decelerating the cam in a controlled fashion at the first and second favored positions and for absorbing vibrations resulting from the collision of the cam with a fixed stop on the door chassis.