-
1.
公开(公告)号:WO2004023177A3
公开(公告)日:2004-04-08
申请号:PCT/DK0300579
申请日:2003-09-05
Applicant: MICRO MANAGED PHOTONS AS , BOZHEVOLNYI SERGEY , NIKOLAJSEN THOMAS , KRYGER BONNI , LEOSSON KRISTJAN , SALAKHUTDINOV ILDAR , SOENDERGAARD THOMAS , SKOVGAARD PETER M W
Inventor: BOZHEVOLNYI SERGEY , NIKOLAJSEN THOMAS , KRYGER BONNI , LEOSSON KRISTJAN , SALAKHUTDINOV ILDAR , SOENDERGAARD THOMAS , SKOVGAARD PETER M W
CPC classification number: G02B6/1226 , B82Y20/00 , G02B6/126 , G02B2006/12142 , G02B2006/12147 , G02B2006/12159 , G02F1/0118 , G02F1/0147 , G02F1/225 , G02F1/3132 , G02F2203/10
Abstract: The present invention relates to waveguides for guiding and modulating long range surface plasmon polaritons (LR-SPPs). The guiding devices comprise a core stripe of e.g. metal of finite width embedded in a cladding such as a dielectric cladding. Particularly, in the waveguides of the invention, the complex propagation constant of the guided LR-SPP mode(s) can be dynamically adjusted by heating of the metal core leading to dissipation of heat into the surrounding dielectric material. The devices may be used in the construction of dynamic light guiding integrated components for optical telecommunication.
Abstract translation: 本发明涉及用于引导和调制远程表面等离子体激元极化子(LR-SPP)的波导。 引导装置包括例如一个核心条纹, 嵌入诸如电介质包层的包层中的有限宽度的金属。 特别地,在本发明的波导中,引导的LR-SPP模式的复传播常数可以通过加热金属芯来动态调节,从而导致热消散进入周围的介电材料。 这些器件可用于构建用于光通信的动态光导集成组件。
-
公开(公告)号:WO0212931A2
公开(公告)日:2002-02-14
申请号:PCT/DK0100511
申请日:2001-07-20
Applicant: CRYSTAL FIBRE AS , LIBORI STIG EIGIL BARKOU , BROENG JES , BJARKLEV ANDERS , SOENDERGAARD THOMAS , NIELSEN MARTIN DYBENDAL
Inventor: LIBORI STIG EIGIL BARKOU , BROENG JES , BJARKLEV ANDERS , SOENDERGAARD THOMAS , NIELSEN MARTIN DYBENDAL
CPC classification number: G02B6/02323 , B82Y20/00 , G02B6/02233 , G02B6/02242 , G02B6/02333 , G02B6/02338 , G02B6/02347 , G02B6/02357 , G02B6/02361 , G02B6/03611 , G02B6/03627 , G02B6/03633 , G02B6/03688 , G02B6/1225
Abstract: Micro-structured optical fibres are improved with respect to increasing the dispersion, both to large negative or large positive values, in a first fibre design in which the fibre has a micro-structured core region being surrounded by a micro-structured cladding region with cladding features being large compared to a predetermined wavelength of light, which can be guided through the fibre. Preferably, the effective index of refraction of the core region, Nco, is larger than the effective index of refraction of the cladding region Ncl, at the predetermined wavelength of light. It is further preferred that the refractive index of one or more of the core features is lower than the refractive index of the core material. Increased dispersion is also obtained by a second optical fibre design in which the fibre has two cladding regions, where the inner cladding region may be micro-structured with inner cladding features and having an effective refrafctive index that is larger than the effective refractive index of the outer cladding region at the operating wavelengths, i.e. the fibre has an inner cladding with a raised effective refractive index. For the second fibre design it is preferred that the outer cladding region is micro-structured with outer cladding features. There is further provided a third optical fibre design, which may be used for non-linear applications, and in which the use of a raised, inner cladding provides the flexibility to obtain fibres with very, small cores and near-zero dispersion over a broad wavelengths range at near-infrared wavelengths. In the third fibre design, the optical fibre has a core region surrounded by an inner cladding region with a number of inner cladding features disposed in an inner cladding material, while the inner cladding region is surrounded by an outer cladding region. In the third design the inner cladding features have a refractive index that differs from the refractive index of the inner cladding material, and the inner cladding region has an effective refractive index Ni that is larger than_the effective refractive index No of the outer cladding region at the operating wavelength. The core region of the third design may be a substantially solid core with an effective refractive index Nco being larger than Ni at the operating wavelength. For the third design, the outer cladding region may also comprise a number of outer cladding features disposed in an outer cladding material, with the outer cladding features having a refractive index that differs from the refractive index of the outer cladding material. For the third fibre design it is preferred that the effective refractive index difference between the core region and the inner cladding region is greater than about 5%.
Abstract translation: 关于在第一光纤设计中增加分散度到大的负的或大的正值的微结构光纤被改进,其中光纤具有由具有包层的微结构的包层区域包围的微结构的核心区域 特征与可以被引导通过光纤的预定波长的光相比是大的。 优选地,核心区域Nco的折射的有效折射率大于在预定波长的光下包层区域Ncl的有效折射率。 进一步优选的是,一个或多个芯部特征的折射率低于芯材料的折射率。 通过第二光纤设计获得增加的色散,其中光纤具有两个包层区域,其中内包层区域可以是具有内包层特征的微结构并且具有大于有效折射率的有效折射率 外包层区域在工作波长,即纤维具有提高的有效折射率的内包层。 对于第二光纤设计,优选的是,外包层区域是具有外包层特征的微结构。 还提供了第三种光纤设计,其可以用于非线性应用,并且其中使用凸起的内包层提供灵活性以获得具有非常小的芯的纤维和在宽的 波长范围在近红外波长。 在第三光纤设计中,光纤具有由内包层区域包围的芯区域,内包层特征设置在内包层材料中,而内包层区域被外包层区域包围。 在第三设计中,内包层特征具有与内包层材料的折射率不同的折射率,并且内包层区域具有有效折射率Ni,其大于所述外包层区域的有效折射率No 工作波长。 第三设计的芯区域可以是在工作波长处具有大于Ni的有效折射率Nco的基本上实心的芯。 对于第三设计,外包层区域还可以包括设置在外包层材料中的多个外包层特征,外包层特征具有不同于外包层材料的折射率的折射率。 对于第三光纤设计,优选的是,芯区域和内包层区域之间的有效折射率差大于约5%。
-