MULTI-FUNCTION SEMICONDUCTOR AND ELECTRONICS PROCESSING

    公开(公告)号:WO2018217284A1

    公开(公告)日:2018-11-29

    申请号:PCT/US2018/024145

    申请日:2018-03-23

    Applicant: NLIGHT, Inc.

    Abstract: A method of tailoring beam characteristics of a laser beam during fabrication of an electronic device. The method includes: providing a substrate comprising one or more layers; adjusting one or more characteristics of a laser beam; and impinging the laser beam having the adjusted beam characteristics on the substrate to carry out at least one process step for fabricating the electronic device. The adjusting of the laser beam comprises: perturbing the laser beam propagating within a first length of fiber to adjust the one or more beam characteristics of the laser beam in the first length of fiber or a second length of fiber or a combination thereof, the second length of fiber having two or more confinement regions; coupling the perturbed laser beam into the second length of fiber; and emitting the laser beam having the adjusted beam characteristics from the second length of fiber.

    光ファイバおよびその製造方法
    2.
    发明申请
    光ファイバおよびその製造方法 审中-公开
    光纤及其制造方法

    公开(公告)号:WO2016047675A1

    公开(公告)日:2016-03-31

    申请号:PCT/JP2015/076899

    申请日:2015-09-24

    Abstract:  光ファイバは、コアと、コアの外周を取り囲むクラッドと、を備え、コアの中心からの距離rに対する比屈折率差がΔ(r)で表される屈折率分布を有し、下記の数式(ここで、rの単位はμmであり、比屈折率差Δ(r)の単位は%であり、Δ ref (r)=-0.064r+0.494であり、MFD 1.31 は波長1.31μmにおけるモードフィールド径である。)で表されるAの値が、0.3%・μm以下である。

    Abstract translation: 该光纤设置有芯和围绕芯的外周的包层,具有由相对于从芯的中心的距离r的比折射率差Δ(r)表示的折射率分布,并且具有 A值为0.3%·μm以下,A值由下式表示(其中r为μm单位,比折射率差Δ(r)为%单位,Δref(r)= - 0.064r +0.494,MFD1.31是波长为1.31μm的模场直径)。

    METHODS FOR MAKING OPTICAL FIBER PREFORMS WITH ONE STEP FLUORINE TRENCH AND OVERCLAD
    3.
    发明申请
    METHODS FOR MAKING OPTICAL FIBER PREFORMS WITH ONE STEP FLUORINE TRENCH AND OVERCLAD 审中-公开
    用一步氟光束和覆膜制造光纤预制件的方法

    公开(公告)号:WO2016044018A1

    公开(公告)日:2016-03-24

    申请号:PCT/US2015/049088

    申请日:2015-09-09

    Abstract: A method is provided that includes: forming a low-index trench region (112) with a first density; forming an inner barrier layer (116a) comprising silica around the trench region at a second density greater than the first density; depositing silica-based soot around the first barrier layer to form an overclad region (114) at a third density less than the second density; inserting a core cane (102) into a trench-overclad structure; forming an outer barrier layer (116b) comprising silica in an outer portion of the overclad region at a fourth density greater than the third density; flowing a down dopant-containing gas through the trench-overclad structure (110) to dope the trench region with the down dopant, and wherein the barrier layers (116a,116b) mitigate diffusion of the down-dopant into the overclad region (114); and consolidating the trench-overclad and the core cane. A method of making a consolidated trench-overclad structure with inner and outer barrier layers is also provided.

    Abstract translation: 提供了一种方法,包括:形成具有第一密度的低折射率沟槽区域(112); 在大于所述第一密度的第二密度处形成围绕所述沟槽区域的二氧化硅的内部阻挡层(116a); 在所述第一阻挡层周围沉积二氧化硅基烟灰以形成小于所述第二密度的第三密度的外包层区域(114); 将芯棒(102)插入沟槽外包层结构中; 在大于所述第三密度的第四密度处,在所述外包层区域的外部部分中形成包含二氧化硅的外阻挡层(116b) 使下掺杂剂的气体流过沟槽外包层结构(110)以用下掺杂剂掺杂沟槽区域,并且其中阻挡层(116a,116b)减轻向下掺杂剂扩散到外包层区域(114)中, ; 巩固壕沟和核心甘蔗。 还提供了一种制造具有内部和外部阻挡层的固结的沟槽外包层结构的方法。

    光ファイバおよび光ファイバ伝送路
    4.
    发明申请
    光ファイバおよび光ファイバ伝送路 审中-公开
    光纤和光纤传输路径

    公开(公告)号:WO2016031901A1

    公开(公告)日:2016-03-03

    申请号:PCT/JP2015/074172

    申请日:2015-08-27

    Abstract:  本実施形態は、W型屈折率分布またはトレンチ型屈折率分布を有し実使用波長帯におけるマイクロベンドロスが低減された光ファイバに関する。当該光ファイバは、中心コアと、該中心コアを取り囲む内クラッドと、該内クラッドを取り囲む外クラッドとを備える。内クラッドは、少なくとも中心コアの屈折率より低い屈折率を有し、外クラッドは、中心コアの屈折率より低く内クラッドの屈折率より高い屈折率を有する。マイクロベンドロスの波長依存性は極大値を有し、該マイクロベンドロスが極大値の10%となる最短波長λ th は1560nmより長い。

    Abstract translation: 本实施例涉及具有W型折射率分布或沟槽型折射率分布的光纤,其中微弯损耗在实际使用的波长范围内减小。 该光纤设置有中心芯,用于围绕中心芯的内包层和用于包围内包层的外包层。 内包层具有低于至少中心纤芯的折射率的折射率,并且外包层的折射率低于中心纤芯的折射率并高于内包层的折射率。 微弯损耗的波长依赖性为最大值,微弯损耗为最大值的10%的最短波长λth大于1560nm。

    BRIGHTESS PRESERVING FIBER BEAM COMBINER FOR REDUCED NONLINEARITIES AND INTENSE RADIATION DAMAGE DURABILITY
    7.
    发明申请
    BRIGHTESS PRESERVING FIBER BEAM COMBINER FOR REDUCED NONLINEARITIES AND INTENSE RADIATION DAMAGE DURABILITY 审中-公开
    保护纤维束组合物以减少非线性和强化辐射损伤耐久性

    公开(公告)号:WO2015136453A1

    公开(公告)日:2015-09-17

    申请号:PCT/IB2015/051757

    申请日:2015-03-11

    Inventor: SHAMIR, Yariv

    Abstract: Method for adapting a fiber beam combiner to transmit at least 20 kW of optical power without noticeable bulk material damage mechanism effect and destructive nonlinearities, the method comprising: connecting an adiabatic beam combiner with a splice connection to an input facet of a graded index fiber which has a core doped with an index increasing material, further comprising the step(s) of: restricting the numerical aperture of the graded index fiber, and/or selecting the index increasing material with a Raman gain lower than that of Ge0 2 such as Al2O3 or Y2O3, and/or placing a shroud tube around the graded index fiber core, said shroud tube comprising a fluorine-doped silica tube.

    Abstract translation: 一种用于使光束组合器适应于传输至少20kW光功率而不发生明显的散装材料损坏机理效应和破坏性非线性的方法,所述方法包括:将绝热束组合器与拼接连接连接到渐变折射率光纤的输入端, 具有掺杂指数增加材料的芯,还包括以下步骤:限制渐变折射率纤维的数值孔径,和/或选择拉曼增益低于GeO 2的拉曼增益,如Al2O3或 Y2O3,和/或将护罩管放置在渐变折射率纤维芯周围,所述护罩管包括掺氟二氧化硅管。

    MULTIMODE OPTICAL FIBER WITH HIGH BANDWIDTH OVER AN EXTENDED WAVELENGTH RANGE, AND CORRESPONDING MULTIMODE OPTICAL SYSTEM.
    8.
    发明申请
    MULTIMODE OPTICAL FIBER WITH HIGH BANDWIDTH OVER AN EXTENDED WAVELENGTH RANGE, AND CORRESPONDING MULTIMODE OPTICAL SYSTEM. 审中-公开
    具有宽带宽度的多模光纤和扩展的波长范围,以及相应的多模光学系统。

    公开(公告)号:WO2015128691A1

    公开(公告)日:2015-09-03

    申请号:PCT/IB2014/000503

    申请日:2014-02-28

    CPC classification number: G02B6/0288 G02B6/03627 G02B6/0365

    Abstract: The invention concerns a multimode optical fiber, with a graded-index core co- doped with at least fluorine F and germanium GeO 2 and a refractive index profile with at least two α-values. According to the invention, the concentration of fluorine F at the core center ([ F ] r=0 ) is between 0 and 3wt% and the concentration of fluorine F at the core outer radius ([ F ] r=a ) is between 0.5wt% and 5.5wt%, with [ F ] r=a - [ F ] r= > 0.4wt%. For wavelengths comprised between 850nm and 1100nm, said multimode optical fiber has an overfilled launch bandwidth (OFL-BW) greater than 3500MHz.km and a calculated effective modal bandwidth (EMBc) greater than 4700MHz.km over a continuous operating wavelength range greater than 150nm.

    Abstract translation: 本发明涉及一种多模光纤,其具有至少掺杂有氟F和锗GeO 2的折射率芯和具有至少两个α值的折射率分布。 根据本发明,核心中心处的氟F浓度([F] r = 0)为0〜3重量%,核心外径处的氟F浓度([F] r = a))为0.5 wt%和5.5wt%,[F] r = a - [F] r => 0.4wt%。 对于850nm和1100nm之间的波长,所述多模光纤具有大于3500MHz.km的过满的发射带宽(OFL-BW),并且在大于150nm的连续工作波长范围内的计算有效模式带宽(EMBc)大于4700MHz.km 。

    극저손실 광섬유와 이의 제조 방법 및 장치
    9.
    发明申请
    극저손실 광섬유와 이의 제조 방법 및 장치 审中-公开
    超低光纤光纤,以及其制造方法和装置

    公开(公告)号:WO2015099489A1

    公开(公告)日:2015-07-02

    申请号:PCT/KR2014/012906

    申请日:2014-12-26

    CPC classification number: G02B6/02 C03B37/0213 C03B37/0253 G02B6/03627

    Abstract: 극저손실 광섬유는 실리카 대비 높은 상대굴절율차를 가지는 코어와 실리카보다 낮은 상대굴절율차를 가지는 클래딩을 포함한다. 코어의 실리카 굴절률 대비 상대굴절율차는 예를 들어 0.0030 이상 0.0055 이하이며, 클래딩의 실리카 굴절률 대비 상대굴절율차는 -0.0020 이상 -0.0003 이하이다. 극저손실 광섬유는, 1310nm 파장에서 광손실이 0.324dB/km 이하, 1383nm 파장에서 광손실이 0.320dB/km 이하, 1550nm 파장에서 광손실이 0.184dB/km 이하, 그리고 1625nm에서 0.20dB/km 이하를 동시에 가지는 손실특성을 갖는다. 극저손실 광섬유는 인출 과정 중 광섬유 표면온도가 유리 천이 구간 내의 온도범위를 가질 때 과냉각된다.

    Abstract translation: 该超低损耗光纤包括具有比二氧化硅更高的相对折射率差的芯和具有比二氧化硅更低的相对折射率差的包层。 相对于二氧化硅的折射率,芯的相对折射率差为0.0030〜0.0055,包层相对于二氧化硅的折射率的相对折射率差为-0.0020〜-0.0003。 超低损耗光纤具有同时在1310nm的波长下同时具有至多0.324dB / km的光损耗的损耗特性,在1383nm波长下最多0.320dB / km,最多0.184dB / km 波长为1550nm,波长为1625nm时为0.20dB / km以下。 当光纤的表面温度在拉伸期间具有玻璃化转变部分的温度范围时,超低损耗光纤是过冷的。

    METHOD OF MAKING PREFORMS FOR LOW BEND LOSS OPTICAL FIBERS
    10.
    发明申请
    METHOD OF MAKING PREFORMS FOR LOW BEND LOSS OPTICAL FIBERS 审中-公开
    制造低折射光纤纤维的方法

    公开(公告)号:WO2014193801A1

    公开(公告)日:2014-12-04

    申请号:PCT/US2014/039520

    申请日:2014-05-27

    Abstract: Methods of making an optical fiber preform comprising in order: (a) manufacturing a glass preform with at least one porous layer; (b) exposing the glass preform with the layer(s) to a fluorine precursor at a temperature below 1295 °C to dope with fluorine, and (c) exposing the fluorine doped glass preform to temperatures above 1400 °C to completely sinter the preform. Preferably, the porous silica based layer(s) of the glass preform exposed to fluorine is pre-densified to have an average density of at least 0.7 g/cm 3 but less than 1.9 g/ cm 3 ; prior to pre-densification the density is preferably under 0.65 g/ cm 3. All methods result in a fluorine doped profile for forming a trench region of an optical fiber having an inner trench region (adjacent the core or inner cladding formed on a core) and an outer trench region (adjacent a later formed outer cladding), the ratio of fluorine concentrations between said inner and outer regions is

    Abstract translation: 制造光纤预制件的方法包括:(a)制造具有至少一个多孔层的玻璃预制件; (b)在低于1295℃的温度下将具有层的玻璃预制件暴露于氟前体以掺杂氟,以及(c)将掺杂氟的玻璃预制件暴露于高于1400℃的温度以完全烧结预制件 。 优选地,暴露于氟的玻璃预制件的多孔二氧化硅基层被预先致密化,以具有至少0.7g / cm 3但小于1.9g / cm 3的平均密度; 在预致密化之前,密度优选在0.65g / cm 3以下。 所有方法都产生氟掺杂分布,用于形成具有内沟槽区(邻近形成在芯上的芯或内包层)和外沟槽区(邻近后形成的外包层)的光纤的沟槽区, 所述内部和外部区域之间的氟浓度<0.4。

Patent Agency Ranking