Abstract:
A circuit for digital-to-analog conversion is described. The circuit includes a digital-to-analog converter (DAC). The DAC includes a double cascaded current source and a differential current-mode switch (DCMS). The circuit further includes a direct current (DC) offset stage. The circuit also includes a load attenuator. The double cascaded current source may be between the DCMS and a rail voltage.
Abstract:
Techniques for generating precise non-overlap time and clock phase delay time across a desired frequency range are provided. In one configuration, a device includes a non-overlapping clock generation circuit which comprises a delay lock loop (DLL) circuit that in turn generates a control voltage to a clock generator circuit coupled thereto. The control voltage operates to maintain precise timing relationship of non- overlapping delayed clock signals generated by the clock generator circuit. In one aspect, the DLL circuit receives an input clock with a known duty cycle and derives an output control voltage to fix the unit delay to a certain portion of the input clock cycle. In a further aspect, the clock generator circuit includes a plurality of voltage-controlled delay cells coupled to the DLL circuit to generate a first set of clock signals and a second set of clock signals delayed from the first set of clock signals by a non- overlapping time (tnlp) that is independent of manufacturing process variations.