Abstract:
Compression transforming video into a compressed representation (which typically can be delivered at a capped pixel rate compatible with conventional video systems), including by generating spatially blended pixels and temporally blended pixels (e.g., temporally and spatially blended pixels) of the video, and determining a subset of the blended pixels for inclusion in the compressed representation including by assessing quality of reconstructed video determined from candidate sets of the blended pixels. Trade-offs may be made between temporal resolution and spatial resolution of regions of reconstructed video determined by the compressed representation to optimize perceived video quality while reducing the data rate. The compressed data may be packed into frames. A reconstruction method generates video from a compressed representation using metadata indicative of at least one reconstruction parameter for spatial regions of the reconstructed video.
Abstract:
Video data that represents two or more views is coded. The regions of the views are asymmetrically processed according to different coding patterns. Techniques that impose asymmetry at the region level, but at the same time may consider overall / average symmetry or significantly reduced asymmetry at the picture / view level are presented.
Abstract:
A multimedia coding and decoding system and method is presented that uses the specific prediction mode to signal supplemental information, e.g., metadata, while considering and providing trade offs between coding performance and metadata capacity. The prediction mode can be encoded according to a mode table that relates mode to bits and by considering coding impact. Start and stop codes can be used to signal the message, while various techniques of how to properly design the mode to bits tables are presented.
Abstract:
Encoding and decoding architectures for 3D video delivery are described, such as 2D compatible 3D video delivery and frame compatible 3D video delivery. The architectures include pre-processing stages to pre-process the output of a base layer video encoder and/or decoder and input the pre-processed output into an enhancement layer video encoder and/or decoder of one or more enhancement layers. Multiplexing methods of how to combine the base and enhancement layer videos are also described.
Abstract:
A multimedia coding and decoding system and method is presented that uses the specific prediction mode to signal supplemental information, e.g., metadata, while considering and providing trade offs between coding performance and metadata capacity. The prediction mode can be encoded according to a mode table that relates mode to bits and by considering coding impact. Start and stop codes can be used to signal the message, while various techniques of how to properly design the mode to bits tables are presented.
Abstract:
Compression transforming video into a compressed representation (which typically can be delivered at a capped pixel rate compatible with conventional video systems), including by generating spatially blended pixels and temporally blended pixels (e.g., temporally and spatially blended pixels) of the video, and determining a subset of the blended pixels for inclusion in the compressed representation including by assessing quality of reconstructed video determined from candidate sets of the blended pixels. Trade-offs may be made between temporal resolution and spatial resolution of regions of reconstructed video determined by the compressed representation to optimize perceived video quality while reducing the data rate. The compressed data may be packed into frames. A reconstruction method generates video from a compressed representation using metadata indicative of at least one reconstruction parameter for spatial regions of the reconstructed video.
Abstract:
Video signal data characterized by an extended dynamic range and/or an extended dimensionality is accepted. The accepted video signal data is converted into a different color space. Extended dynamic range and/or extended dimensionality data may be mapped to a container format that conforms to a legacy media interface. The extended dynamic range/dimensionality data are thus transportable over the legacy media interface.
Abstract:
Full resolution graphic overlays (e.g., graphics, menus, arrows, buttons, captions, banners, picture in picture information) and subtitles in frame compatible 3D delivery for a scalable system are described.
Abstract:
An encoding device evaluates a plurality of processing and/or post-processing algorithms and/or methods to be applied to a video stream, and signals a selected method, algorithm, class or category of methods/algorithms either in an encoded bitstream or as side information related to the encoded bitstream. A decoding device or post-processor utilizes the signaled algorithm or selects an algorithm/method based on the signaled method or algorithm. The selection is based, for example, on availability of the algorithm/method at the decoder/post-processor and/or cost of implementation. The video stream may comprise, for example, downsampled multiplexed stereoscopic images and the selected algorithm may include any of upconversion and/or error correction techniques that contribute to a restoration of the downsampled images.
Abstract:
Video signal data characterized by an extended dynamic range and/or an extended dimensionality is accepted. The accepted video signal data is converted into a different color space. Extended dynamic range and/or extended dimensionality data may be mapped to a container format that conforms to a legacy media interface. The extended dynamic range/dimensionality data are thus transportable over the legacy media interface.