Abstract:
A brake rotor can include a supporting layer applied to a friction surface of a brake rotor substrate, which can optionally include cast iron, and a coating applied over the supporting layer. The supporting layer can include a preparatory metal, and the coating can impart wear and corrosion resistant properties to the friction surface.
Abstract:
A brake disk formed of a light weight ceramic and ceramic composite materials, the brake disk having a coating overlying at least a portion of the brake disk. The brake disk includes parallel surfaces wherein at least a portion of the parallel surfaces are coated with a coating material to increase wear and decrease corrosion. The coating over the brake disk includes multiple layers of the coating material, wherein the coating material includes coating material particles configured to construct a pattern of repetition that is consistent with a lattice structure when applied over the parallel surfaces of the brake disk.
Abstract:
In some implementations of the current subject matter, a braking system can include a first combination of braking components operable to slow or stop rotational motion of a first wheel of the multi-wheeled vehicle and a second combination of braking components operable to slow or stop rotational motion of a second wheel of the multi -wheeled vehicle. The first combination can include a first brake rotor and a first brake pad, and the first brake rotor can include a coating that imparts wear and corrosion resistant properties to the first brake rotor. The second combination can include a second brake rotor and a second brake pad, and the second brake rotor can lack the coating. Related systems, methods, articles of manufacture, and the like are disclosed.
Abstract:
A vehicle braking system reduces particulate emissions resulting from wear of the brake pad and rotor during stopping or slowing of a vehicle. The rotor includes at least one friction surface, that has an outer coating of a corrosion and wear-resistant material. This uoter coating can optionally include a first layer comprising a crystalline material and a second layer overlaying and contacting the first layer and comprising an amorphous material. The first layer and the second layer can optionally have an inter-layer period of less than 10 nm such that the structure of the outer coating is that of a superlattice. A brake member that includes a friction material is mounted to a caliper on the vehicle with the friction material disposed opposite the at least one friction surface so that the friction material reversibly engages with the outer coating of the corrosion and wear-resistant material when the braking system is operated to stop or slow the vehicle. Contact between the friction material and the outer coating results in substantially reduced conversion of the friction material to dust while producing an improved coefficient of friction relative to standard braking systems. Related systems, apparatus, methods, and/or articles are also described.
Abstract:
A vehicle braking system reduces particulate emissions resulting from wear of the brake pad and rotor during stopping or slowing of a vehicle. The rotor includes at least one friction surface, that has an outer coating of a corrosion and wear-resistant material. This uoter coating can optionally include a first layer comprising a crystalline material and a second layer overlaying and contacting the first layer and comprising an amorphous material. The first layer and the second layer can optionally have an inter-layer period of less than 10 nm such that the structure of the outer coating is that of a superlattice. A brake member that includes a friction material is mounted to a caliper on the vehicle with the friction material disposed opposite the at least one friction surface so that the friction material reversibly engages with the outer coating of the corrosion and wear-resistant material when the braking system is operated to stop or slow the vehicle. Contact between the friction material and the outer coating results in substantially reduced conversion of the friction material to dust while producing an improved coefficient of friction relative to standard braking systems. Related systems, apparatus, methods, and/or articles are also described.
Abstract:
A brake disk or drum has at least one working surface which opposes a braking member such as a brake pad or shoe. A plurality of spaced, raised island formations are provided across the working surface, with channels extending between the island formations. Each raised island formation has an outer surface which contacts a brake pad or brake shoe during braking.
Abstract:
A brake rotor assembly (200) can include a structural part (202) having a receiving surface (206) and at least one friction surface part (204) having a contact surface. The friction surface part can be fixably attached to the receiving surface of the structural part (202) such that the contact surface faces away from the receiving surface of the structural surface to form at least part of an annular braking surface arranged concentrically around an axis of rotation of the structural part.
Abstract:
A braking system including a first combination of braking components operable to slow or stop rotational motion of a first wheel of the multi- wheeled vehicle and a second combination of braking components operable to slow or stop rotational motion of a second wheel of the multi-wheeled vehicle. The first combination includes a first brake rotor and a first brake pad, and the first brake rotor includes a coating that imparts wear and corrosion resistant properties to the first brake rotor. The second combination includes a second brake rotor and a second brake pad, the second brake rotor lacking the coating.
Abstract:
A brake disk including carbon steel, stainless steel or a ceramic composite material and coated with a coating material that is wear and corrosion resistant and when applied properly allows for the coated surface to have a variety of "textured" appearances. For example; the coated surface can be made to look like woven carbon fiber. The aesthetically pleasing, wear and corrosion resistant coating overlays wear surfaces and portions of the brake disk that will be, in many cases, visible when the brake disk is installed on the vehicle. The coating includes a first layer of a metal, such as a pure titanium metal, and a second layer that can include a Nitride, Boride, Carbide or Oxide of the metal used in the first layer. The coating can be applied using a physical vapor deposition source such as a cathodic arc source with a controlled gas atmosphere.