Abstract:
A personalized medical device intended for correction of defects, in particular in the orofacial area is multicomposite and comprises a hard tissue replacement and a soft tissue replacement. The hard tissue replacement is a hard core of biocompatible thermoplastic material and the soft tissue replacement is a biocompatible elastic substance. Preparation of personalized medical device even in the prenatal period using CT, MRI and 3D/4D electronic USG imaging and "additive manufacturing" technology.
Abstract:
Flow profile with debossed boundaries of flow channels in the porous body with heart-exchange function consists of a plate (1), made of metal foam with open pore structure, where the flow channels are hydraulically defined by columns (2), created by pressing inert putty in the pores.
Abstract:
An equipment for disposal of cyanobacteria in stagnant waters has a float structure, to which two types of bipolar electrodes (1 and 6) are mounted under the surface of water, interconnected and supplied with electric direct current via an alternator (10). The equipment comprises a supporting float (5) having the shape of a hollow body, in which there is a transversely positioned rib (4) with an attached suspended electrode (1), interconnected to supplies of photovoltaic cells (8) and alternator (10), fixed on the rib (4) there is the device (9) for utilizing wind power, connected to an alternator (10), driving the water pump (2), which is placed in the delivery pipe (3) and is connected directly to the axis of the device (9), for utilization of wind power. Fixed on the supporting float (5) there is the upper float (7) with the anchored grid electrode (6) and with the stored photovoltaic cells (8), interconnected with the electrodes (1) and (6). The delivery pipe (3) is connected to the water pump (2), and the outlet of the delivery pipe (3) is positioned directly above the suspended electrode (1). The upper float (7) copies the shape of the supporting float (5) and is made of a dielectric, light, floating material. The method of disposal of cyanobacteria in stagnant waters is based on quatrolytic disposal of cyanobacteria by the electroflotation method, by means of the above-mentioned equipment.