Abstract:
Provided is a method and system for controlling a fabrication cluster for processing of a substrate in an etch process, the fabrication cluster having equipment settings and process parameters. A correlation of etch stage measurements to actual etch stage data is developed, the etch stage measurements comprising measurements using two or more optical metrology devices and an etch sensor device. An etch stage value is extracted using the developed correlation and the etch stage measurement. If the etch stage measurement objectives are not met, the metrology devices are modified, a different etch sensor device is selected, the etch stage measurements are enhanced, and/or the correlation algorithm is refined. The steps are iterated until the etch stage measurement objectives are met. The extracted etch stage value is used to adjust an equipment setting and/or process parameter of the fabrication cluster.
Abstract:
An apparatus, system, and method for in-situ etching monitoring in a plasma processing chamber. The apparatus includes a continuous wave broadband light source; an illumination system configured to illuminate an area on a substrate with an incident light beam having a fixed polarization direction, the incident light beam from the broadband light source being modulated by a shutter; a collection system configured to collect a reflected light beam being reflected from the illuminated area on the substrate, and direct the reflected light beam to a detector; and processing circuitry. The processing circuitry is configured to process the reflected light beam to suppress background light, determine a property value from the processed light, and control an etch process based on the determined property value.
Abstract:
Provided is a method, system, and apparatus for inspecting a substrate. The method comprises illuminating the substrate with a singular laser beam, the singular laser beam forming an illuminated spot on the substrate and a bright fringe at a surface of the substrate, the bright fringe extending over at least a portion of the illuminated spot, and detecting, by an optical detection system, scattered light from nano-defects present on the substrate within the illuminated spot.