Abstract:
Disclosed herein is a method for determining a control parameter for an apparatus utilised in a semiconductor manufacturing process, the method comprising: obtaining performance data associated with a substrate subject to the semiconductor manufacturing process; obtaining die specification data comprising values of an expected yield of one or more dies on the substrate based on the performance data and/or a specification for the performance data; and determining the control parameter in dependence on the performance data and the die specification data. Advantageously, the efficiency and accuracy of processes are improved by only determining how to perform the processes in dependence on dies within specification.
Abstract:
A method includes receiving, from a system manufacturer, system test data for a plurality of electronic systems. Each of the plurality of electronic systems includes a plurality of electronic components. The method also includes determining a relationship between a set of electronic components from the plurality of electronic components and the electronic systems upon which the electronic components of the set of electronic components are assembled and receiving, from a component manufacturer, manufacturing attributes for the set of electronic components. The method further includes selecting a data subset from the system test data corresponding to a subgroup of the set of electronic components. The subgroup includes components from a same fabrication cluster. Additionally, the method includes identifying an outlier relative to the data subset and communicating information about the outlier to at least one of the system manufacturer or the component manufacturer.
Abstract:
A spectral feature of a pulsed light beam produced by an optical source is controlled by a method. The method includes producing a pulsed light beam at a pulse repetition rate; directing the pulsed light beam toward a substrate received in a lithography exposure apparatus to expose the substrate to the pulsed light beam; modifying a pulse repetition rate of the pulsed light beam as it is exposing the substrate. The method includes determining an amount of adjustment to a spectral feature of the pulsed light beam, the adjustment amount compensating for a variation in the spectral feature of the pulsed light beam that correlates to the modification of the pulse repetition rate of the pulsed light beam. The method includes changing the spectral feature of the poised light beam by the determined adjustment amount as the substrate is exposed to thereby compensate for the variation in the spectral feature.
Abstract:
A substrate, including a substrate layer; and an etchable layer on the substrate layer, the etchable layer including a patterned region thereon or therein and including a blank region of sufficient size to enable a bulk etch rate of an etch tool for etching the blank region to be determined.
Abstract:
Automatic test equipment with multiple components to generate highly accurate and stable analog test signals and method for operating the test system in semiconductor manufacturing process are disclosed. Output analog signals from existing test systems often fail the stability and accuracy requirement with less than 10 mV variations for testing certain electronic devices, due in part to environmental condition variations such as temperature fluctuations. Traditional compensation mechanisms for temperature variations involve time consuming and disruptive calibration procedures. Disclosed here is a system and method that provides near real-time monitoring and compensation for temperature-induced variations via a digital control mechanism that compensates for environmental variations in a time scale of less than 10 milliseconds and maintains the AC output analog signal with 10 milliVolt accuracy.
Abstract:
Feature extraction and classification is used for process window monitoring. A classifier, based on combinations of metrics of masked die images and including a set of significant combinations of one or more segment masks, metrics, and wafer images, is capable of detecting a process non-compliance. A process status can be determined using a classifier based on calculated metrics. The classifier may learn from nominal data.
Abstract:
A method for monitoring and controlling a substrate singulation process is described. Device edges are imaged and identified for analysis. Discrepancies in device edges are noted and used to modify a singulation process and to monitor the operation of singulation processes for anomalous behavior.
Abstract:
A method to improve the planarity of a semiconductor wafer and an assembly made from the method. In a preferred embodiment of the method, a compressive PECVD oxide layer such as SiO2 having a predetermined thickness or pattern is deposited on the second surface of a semiconductor wafer having an undesirable warp or bow. The thickness or pattern of the deposited oxide layer is determined by the measured warp or bow of the semiconductor wafer. The compressive oxide layer induces an offsetting compressive force on the second surface of the semiconductor wafer to reduce the warp and bow across the major surface of the semiconductor wafer.
Abstract:
Chemical mechanical polishing (CMP) apparatus and methods for manufacturing CMP apparatus are provided herein. CMP apparatus may include polishing pads, polishing head retaining rings, and polishing head membranes, among others, and the CMP apparatus may be manufactured via additive manufacturing processes, such as three dimensional (3D) printing processes. The CMP apparatus may include wireless communication apparatus components integrated therein. Methods of manufacturing CMP apparatus include 3D printing wireless communication apparatus into a polishing pad and printing a polishing pad with a recess configured to receive a preformed wireless communication apparatus.
Abstract:
A method of making a semiconductor device can include forming an embedded die panel by encapsulating a first semiconductor die and a second semiconductor die with conductive interconnects in a single step. An actual position of the first semiconductor die and second semiconductor die can be measured within the embedded die panel. The first semiconductor die and the second semiconductor die can be interconnected by a build-up interconnect structure comprising a first unit specific alignment portion aligned with the first semiconductor die, a second unit specific alignment portion aligned with the second semiconductor die, unit specific routing connecting the first unit specific alignment portion and the second unit specific alignment portion, and a fixed portion aligned with outline of embedded die panel and coupled to the unit specific routing.