Abstract:
A method for preparing a patterned feature includes the steps of I) casting a curable silicone composition against a master, II) curing the curable silicone composition to form a silicone mold, II) separating the master and the silicone mold, IV) filling a silicone mold having a patterned surface with a curable epoxy formulation; V) curing the curable epoxy formulation to form a patterned feature; VI) separating the silicone mold and the patterned feature; optionally VIII) etching the patterned feature; optionally IX) cleaning the silicone mold; and optionally X) repeating steps IV) to IX) reusing the silicone mold.
Abstract:
This invention relates to a photovoltaic cell module and a process of applying a silicone based hot melt encapsulant material (102a, 104a) onto photovoltaic cells (103a) to form a photovoltaic cell module. There is provided a photovoltaic array with more efficient manufacturing and better utilization of the solar spectrum by using silicone hot melt sheets (102a, 104a) to give a silicone encapsulant photovoltaic device with the process ease of an organic encapsulant but the optical and chemical advantages of a silicone encapsulant. There is further provided a method for fabricating photovoltaic cells with increased throughput and optical efficiency when compared to prior art encapsulation methods. The preferred silicone material is provided in flexible sheet with hot melt properties and low surface tack.
Abstract:
A method for preparing a patterned feature includes the steps of I) casting a curable silicone composition against a master, II) curing the curable silicone composition to form a silicone mold, II) separating the master and the silicone mold, IV) filling a silicone mold having a patterned surface with a curable epoxy formulation; V) curing the curable epoxy formulation to form a patterned feature; VI) separating the silicone mold and the patterned feature; optionally VIII) etching the patterned feature; optionally IX) cleaning the silicone mold; and optionally X) repeating steps IV) to IX) reusing the silicone mold.
Abstract:
Curable compositions contain (i) a free radical polymerizable organosilicon monomer, oligomer or polymer; (ii) an organoborane amine complex; optionally (iii) an amine reactive compound having amine reactive groups; and optionally (iv) a component capable of generating a gas when mixed with a compound bearing active hydrogen and a catalyst. The curable compositions can be used as a rubber, tape, adhesive, foam, pressure sensitive adhesive, protective coating, thin film, thermoplastic monolithic molded part, thermosetting monolithic molded part, sealant, gasket, seal, or o-ring, die attachment adhesive, lid sealant, encapsulant, potting compound, or conformal coating. The compositions can also be used in composite articles of manufacture such as integrally bonded device including electrical and electronic connectors and scuba diving masks, in which substrates are coated or bonded together with the composition and cured.
Abstract:
A fluoroplastic composition. The fluoroplastic composition includes a fluoroplastic; a silicone hot melt additive; and an optional filler. A method of processing the fluoroplastic composition is also disclosed.
Abstract:
A thermoplastic composition. The thermoplastic composition includes a thermoplastic; a silicone hot melt additive; and optional filler. A method of processing the thermoplastic composition is also disclosed.
Abstract:
A process for reducing Ag electromigration in electronic circuitry includes the step of treating the electronic circuitry with an electromigration resistant composition. This process is useful in fabricating electronic devices having electronic circuitry that is close together, such as resistors, capacitors, and displays, e.g. , a plasma display panel (PDP) or a liquid crystal display (LCD).
Abstract:
A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1 x 10 -2 g/m 2 /day at 22 °C and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy- functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.
Abstract translation:柔性阻挡膜的厚度大于零至小于5000纳米,水蒸汽透过率在22℃和47%相对湿度下不超过1×10 -2 g / m 2 /天。 柔性阻隔膜由包含多官能丙烯酸酯的组合物形成。 组合物还包含烷氧基官能的有机金属化合物和烷氧基官能的有机硅化合物的反应产物。 形成柔性阻挡膜的方法包括以下步骤:将组合物设置在基材上并固化组合物以形成柔性阻挡膜。 柔性阻挡膜可用于有机电子器件。
Abstract:
This invention relates to a photovoltaic cell module and a process of applying a silicone based hot melt encapsulant material (102a, 104a) onto photovoltaic cells (103a) to form a photovoltaic cell module. There is provided a photovoltaic array with more efficient manufacturing and better utilization of the solar spectrum by using silicone hot melt sheets (102a, 104a) to give a silicone encapsulant photovoltaic device with the process ease of an organic encapsulant but the optical and chemical advantages of a silicone encapsulant. There is further provided a method for fabricating photovoltaic cells with increased throughput and optical efficiency when compared to prior art encapsulation methods. The preferred silicone material is provided in flexible sheet with hot melt properties and low surface tack.
Abstract:
A process for reducing Ag electromigration in electronic circuitry includes the step of treating the electronic circuitry with an electromigration resistant composition. This process is useful in fabricating electronic devices having electronic circuitry that is close together, such as resistors, capacitors, and displays, e.g., a plasma display panel (PDP) or a liquid crystal display (LCD).