Abstract:
Protocols for radioimaging an event or disorder are provided. An exemplary protocol comprises a method of radioimaging a myocardial perfusion, the method comprising in sequence: (a) administering to a subject about 3 mCi Tl201 thallous chloride; (b) allowing said subject to rest; (c) radioimaging a heart of said subject; (d) subjecting said subject to a physical stress; (e) administering to said subject at a peak of said physical stress about 20-30 mCi Tc99m sestamibi; and (f) radioimaging said heart of said subject, thereby radioimaging a myocardial perfusion.
Abstract:
Protocols for radioimaging an event or disorder are provided. An exemplary protocol comprises a method of radioimaging a myocardial perfusion, the method comprising in sequence: (a) administering to a subject about 3 mCi Tl201 thallous chloride; (b) allowing said subject to rest; (c) radioimaging a heart of said subject; (d) subjecting said subject to a physical stress; (e) administering to said subject at a peak of said physical stress about 20-30 mCi Tc99m sestamibi; and (f) radioimaging said heart of said subject, thereby radioimaging a myocardial perfusion.
Abstract:
A method for identifying a patient for cancer therapy can include administering a diagnostic dose of a detectably labeled first binding agent to a patient, the detectably labeled binding agent being capable of binding a molecular target. The method also includes selecting a patient for administration of a therapeutic dose of a second binding agent capable of binding a cellular target, wherein the selected patient exhibits a positive reading for the detectably labeled first binding agent. Furthermore, the method can include administering a therapeutic dose of the second binding agent to the patient.
Abstract:
The present invention relates to the capabilities of a highly sensitive radioactive-emission camera, a result of a meticulous search for the many different effects that combine synergistically to increase sensitivity and spatial, spectral, and time resolutions. The new camera opens a new realm in SPECT-type imaging, making it viable for dynamic studies, the use of radiopharmaceutical cocktails, molecular imaging, dosimetry and other studies requiring the high sensitivity and resolutions. In particular, the new camera opens the door to SPECT expert system, examples for which are provided. The expert system relates to defining disease signatures for automatic diagnosis, preferably, based on a multi-parameter vector, preferably, based on kinetic radiopharmaceutical values. Additionally or alternatively, based on simultaneous administration of multi le isotopes