Abstract:
Methods and systems to train artificial intelligence modules protect privacy of sensitive data by virtue of the fact that the data source (1) extracts blocks of partial data from the source item of content (11) and distributes the extracted partial data to a plurality of processing nodes (5) in an intermediate processing system (2). The processing nodes each perform an initial portion of the training process, for example by performing a convolution of the partial data, to produce a partial model (PM). The partial models (PM) are transmitted to a merging module (10) which amalgamates them and completes the training process to generate a global model (GM) for the AI task.
Abstract:
The techniques described herein relate to methods, apparatus, and computer readable media configured to decode video data. Video data includes video content, overlay content, and overlay metadata that is specified separate from the video content and overlay content. The overlay content is determined to be associated with the video content based on the overlay metadata. The overlay content is overlaid onto the video content in the region of the video content.
Abstract:
Embodiments of the invention provide a screen sharing technology including a local computing device and a remote computing device. The local computing device compresses pixel data captured from a frame buffer of the local computing device into a video stream. When the local computing device determines that a video visual component is to be displayed, it obtains compressed data for the video visual component, location information and temporal information. The remote computing device decodes the compressed data and the video stream in different decoder and displays the video stream and compressed data on its monitor according to the temporal information and location information. As such, the embodiment described above leads to better coding efficiency, better coding quality, and lower bit rate.
Abstract:
High frequency currents may be rectified by means of a printable diode comprising a first and a second electrode, between which a semiconducting layer comprising semiconducting particles embedded in an inert matrix, and a conducting layer comprising conducting particles embedded in an inert matrix are arranged.
Abstract:
Disclosed are various biomarkers of hepatocellular cancer (HCC). The present invention also provides various methods of using the biomarkers, including methods for diagnosis of HCC, methods of determining predisposition to HCC, methods of monitoring progression/regression of HCC, methods of assessing efficacy of compositions for treating HCC, as well as other methods based on biomarkers of HCC.
Abstract:
A system for a meter configured to determine an analyte concentration of a fluid sample includes a housing and a temperature sensor disposed within the housing. The system also includes a processor configured to receive temperature data from the temperature sensor upon the meter entering one of a charge state and a discharge state. The processor is further configured to predict a temperature value that approximates the ambient temperature outside of the housing. The predicted temperature value is based on historical temperature data received from the temperature sensor such that the predicted temperature value remains constant if a recently received temperature value remains within predetermined upper and lower temperature thresholds and the recently received temperature value exceeds the at least one predicted temperature value.
Abstract:
Disclosed herein is a driver gene signature for predicting survival in patients with solid tumors, such as hepatocellular carcinoma (HCC) and breast cancer. The gene signature includes ten tumor-associated genes, SH2D4A, CCDC25, ELP3, DLCl, PROSC, SORBS3, HNRPD, PAQR3, PHF17 and DCK. A decrease in DNA copy number or mRNA expression of SH2D4A, CCDC25, ELP3, DLCl, PROSC and S0RBS3 in solid tumors is associated with a poor prognosis, while a decrease in DNA copy number or mRNA expression of HNRPD, PAQR3, PHF17 and DCK in solid tumors is associated with a good prognosis. Thus, provided herein is a method of predicting the prognosis of a patient diagnosed with HCC or breast cancer by detecting expression of one of more tumor-associated genes in a tumor sample and comparing expression of the one or more tumor-associated genes in the tumor sample to a control. Also provided is a method of treating a patient diagnosed with HCC or breast cancer by administering a therapeutically effective amount of an agent that alters expression or activity of one or more of the disclosed tumor- associated genes. Further provided are arrays comprising probes or antibodies specific for a plurality of tumor-associated genes or proteins.
Abstract:
A spinneret for producing nanofibres from a viscous liquid using electrostatic spinning in an electric field is described. The spinneret includes one or more narrow annular bodies radially centred about and axially spaced along a central axis. The annular bodies may be discs, rings, or coils.
Abstract:
It is disclosed herein that expression of microRNA-26 is decreased in hepatocellular (HCC) tumor tissue relative to non-cancerous tissue, and that a low level of microRNA-26 is associated with a poor clinical outcome. It is also disclosed herein that a low expression level of microRNA-26 is correlated with a favorable response to interferon (IFN) - α therapy in HCC patients. Thus, provided herein is a method of predicting the clinical outcome of a patient diagnosed with HCC comprising detecting the level of microRNA-26 expression in a sample obtained from the patient. Also provided is a method of selecting a patient diagnosed with HCC as a candidate for IFN-α therapy, comprising detecting the level of microRNA-26 expression in a sample obtained from the patient. A method of identifying therapeutic agents for the treatment of HCC, comprising screening candidate agents in vitro to select an agent that increases expression of microRNA-26 in HCC cells are also provided. Further provided are methods of treating a patient diagnosed with HCC and expressing a low level of miR-26, wherein treatment comprises IFN-α therapy.
Abstract:
An assembly determines an analyte concentration in a sample of body fluid. The assembly includes a test sensor having a fluid-receiving area for receiving a sample of body fluid, where the fluid-receiving area contains a reagent that produces a measurable reaction with an analyte in the sample. The assembly also includes a meter having a port or opening configured to receive the test sensor; a measurement system configured to determine a measurement of the reaction between the reagent and the analyte; and a temperature- measuring system configured to determine a measurement of the test- sensor temperature when the test sensor is received into the opening. The meter determines a concentration of the analyte in the sample according to the measurement of the reaction and the measurement of the test-sensor temperature.