Abstract:
A method and apparatus are provided for selecting between a plurality of instruction sets available to a microprocessor. An instruction fetch address is supplied. At least one predetermined bit of the instruction fetch address is used to select between the instruction sets. Once an instruction set has been selected instructions may be fetched and decoded with a decoding scheme appropriate to the instruction set.
Abstract:
A composite wellbore ball valve has a spherical, fiber reinforced composite ball valve closure. The closure has an interior, central through-bore and an annular metallic sealing surface. A ball carrying assembly has an annular, metallic sealing seat surface adapted to contact and form a metal-to-metal seal with the metallic sealing surface of the ball valve closure when the ball valve closure is closed.
Abstract:
A well tool with a housing has an actuator sleeve in the housing. The actuator sleeve has an internal shifting tool engaging profile. An actuator is in the housing. The actuator is responsive to a remote signal to move the actuator sleeve from a first position to a second position. A dog is in the housing, supported to couple the actuator sleeve to the actuator when the actuator sleeve is in the first position and unsupported to allow the actuator sleeve to uncouple from the actuator when the actuator sleeve is in the second position.
Abstract:
There is provided a method to dynamically determine which instructions from a plurality of available instructions to issue in each clock cycle in a multithreaded processor capable of issuing a plurality of instructions in each clock cycle, comprising the steps of: determining a highest priority instruction from the plurality of available instructions; determining the compatibility of the highest priority instruction with each of the remaining available instructions; and issuing the highest priority instruction together with other instructions compatible with the highest priority instruction in the same clock cycle; wherein the highest priority instruction cannot be a speculative instruction. The effect of this is that speculative instructions are only ever issued together with at least one non- speculative instruction.
Abstract:
A method and apparatus are provided for executing instructions of a multi-threaded processor having multiple hardware threads (32, 34) with differing hardware resources comprising the steps of receiving a plurality of streams of instructions (38, 44) and determining which hardware threads are able to receive instructions for execution (40, 46), determining whether a thread determined to be available for executing an instructions has the hardware resources available required by that instructions (36) and executing the instruction in dependence on the result of the determination (50).
Abstract:
A lithium electrochemical cell design incorporating a low molality electrolyte including LiI is disclosed. The resulting cell delivers excellent performance under a wide range of temperatures, conditions and drain rates. The electrolyte has 0,5 molal or less Lithium iodide dissolved in a solvent blend comprising dioxolane and an acylic ether.
Abstract:
The invention is an electrochemical battery cell, such as a Li/FeS 2 cell, with a nonaqueous liquid electrolyte having a solvent with a high ether content and a solute including LiI and one or more additional salts, preferably LiCF 3 SO 3 , that can avoid a sharp drop in voltage on high rate and high power discharge at low temperatures, while still providing reasonable capacity on high rate and high power discharge at room temperature. The electrolyte solvent includes 1,3-dioxolane and 1,2-dimethoxyethan in a volume ratio greater than 45 : 55 and less than 85 : 15. When the total solute concentration in the electrolyte is low (0.40 to 0.65 mol/l solvent), the solute contains at least 35 mole percent LiI, and when the total solute concentration in the electrolyte is high (greater than 0.65 to 2.0 mol/l solvent), the solute contains less than 35 mole percent LiI.
Abstract:
The invention is an electrochemical battery cell, such as a Li/FeS 2 cell, with a nonaqueous liquid electrolyte having a solvent with a high ether content and a solute including LiI and one or more additional salts, preferably LiCF 3 SO 3 , that can avoid a sharp drop in voltage on high rate and high power discharge at low temperatures, while still providing reasonable capacity on high rate and high power discharge at room temperature. The electrolyte solvent includes 1,3-dioxolane and 1,2-dimethoxyethan in a volume ratio greater than 45 : 55 and less than 85 : 15. When the total solute concentration in the electrolyte is low (0.40 to 0.65 mol/l solvent), the solute contains at least 35 mole percent LiI, and when the total solute concentration in the electrolyte is high (greater than 0.65 to 2.0 mol/l solvent), the solute contains less than 35 mole percent LiI.
Abstract:
An electrochemical battery cell with CuO as a positive electrode active material. The specific surface area of the CuO is from 1.0 to 4.0 m 2 /gram to provide an increase in the high voltage discharge capacity of the CuO.