Abstract:
The present disclosure presents a separator for a lithium-containing battery, including a polymeric membrane; and a ceramic coating on at least one surface of the polymeric membrane, wherein the ceramic coating is chemically reactive with lithium ions to provide an ionically conductive and electrically insulating surface layer; and wherein the ceramic coating has a thickness of about 1 μm or more and about 10 μm or less.
Abstract:
The performance and the lifetime of energy storage devices can be hindered by the growth of metal dendrites during operation. Electrolytes having dendrite-inhibiting additives can result in significant improvement. In particular, energy storage devices having an electrode containing a metallic element, M1 can be characterized by a non-aqueous, liquid electrolyte having a first salt and a dendrite-inhibiting salt. The first salt can have a cation of M1 and the dendrite-inhibiting salt can have a cation of metallic element, M2, wherein the cation of M2 has an ionic size greater than, or equal to, the cation of M1.
Abstract:
Systems and processes are provided for efficient, cost-effective production of silicon by chemical vapor deposition. Reaction byproducts are recycled for use within the systems and processes without recovery and external processing of the byproducts. The systems and processes provide savings in both capital and operating costs.
Abstract:
Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.
Abstract:
Disclosed herein are compositions and methods for detecting and analyzing both transcriptional and translational events occurring in live cells. In particular, short-lived reporters with enzymatic amplification are described. These reporters have relatively short maturation time and a short cellular lifetime which can be exploited to detect transient events of gene expression in live cells.
Abstract:
A high yield, economical process for purifying taxanes from yew biomass is disclosed. The process does not require initial liquid:liquid portioning of the crude extract to separate highly polar substances. The organic solvent extract of the biomass is adsorbed onto and selectively desorbed from an adsorption resin to provide a taxane enriched eluate. Substantially pure individual taxanes may be further isolated from the eluate by hydrophobic-interaction chromatography.
Abstract:
Solid pharmaceutical compositions suitable for the oral delivery of pharmacologically active agents, e.g. peptides, comprising a therapeutically-effective amount of a pharmacologically active agent; a crospovidone or povidone; and a delivery agent for said pharmacologically active agent are disclosed. The compositions provide excellent oral bioavailability of pharmacologically active agents, particularly calcitonin.
Abstract:
Composite materials containing sulfurized polymers and sulfur-containing particles can be used in lithium-sulfur energy storage devices as a positive electrode. The composite material exhibits relatively high capacity retention and high charge/discharge cycle stability. In one particular instance, the composite comprises a sulfurized polymer having chains that are cross-linked through sulfur bonds. The polymer provides a matrix in which sulfide and/or polysulfide intermediates formed during electrochemical charge-discharge processes of sulfur can be confined through chemical bonds and not mere physical confinement or sorption.
Abstract:
Modified surfaces on metal anodes for batteries can help resist formation of malfunction-inducing surface defects. The modification can include application of a protective nanocomposite coating that can inhibit formation of surface defects. such as dendrites, on the anode during charge/discharge cycles. For example, for anodes having a metal (M'), the protective coating can be characterized by products of chemical or electrochemical dissociation of a nanocomposite containing a polymer and an exfoliated compound (Ma'Mb''Xc). The metal, M', comprises Li, Na, or Zn. The exfoliated compound comprises M' among lamella of Mb''Xc, wherein M'' is Fe, Mo, Ta, W, or V, and X is S, O, or Se.
Abstract:
Methods for making composite anodes, such as macroporous composite anodes, are disclosed. Embodiments of the methods may include forming a tape from a slurry including a substrate metal precursor, an anode active material, a pore-forming agent, a binder, and a solvent. A laminated structure may be prepared from the tape and sintered to produce a porous structure, such as a macroporous structure. The macroporous structure may be heated to reduce a substrate metal precursor and/or anode active material. Macroporous composite anodes formed by some embodiments of the disclosed methods comprise a porous metal and an anode active material, wherein the anode active material is both externally and internally incorporated throughout and on the surface of the macroporous structure.