Abstract:
A semiconductor packaging system has a packaging substrate into which inductors and/or capacitors are partially or completely embedded. An active portion of a voltage regulator is mounted on the packaging substrate and supplies regulated voltage to a die also mounted on the packaging substrate. Alternatively, the active portion of the voltage regulator is integrated into the die the voltage regulator supplies voltage to. The voltage regulator cooperates with the inductors and/or capacitors to supply voltage to the die. The inductors may be through vias in the packaging substrate. For additional inductance, through vias in a printed circuit board on which the packaging substrate is mounted may couple to the through vias in the packaging substrate.
Abstract:
Systems and method for a capacitor-less Low Dropout (LDO) voltage regulator. An error amplifier is configured to amplify a differential between a reference voltage and a regulated LDO voltage. Without including an external capacitor in the LDO voltage regulator, a Miller amplifier is coupled to an output of the error amplifier, wherein the Miller amplifier is configured to amplify a Miller capacitance formed at an input node of the Miller amplifier. A capacitor coupled to the output of the error amplifier creates a positive feedback loop for decreasing a quality factor (Q), such that system stability is improved.
Abstract:
A stacked integrated circuit includes a first tier IC and a second tier IC. Active faces of the first tier IC and the second tier IC face each other. An interconnect structure, such as microbumps, couples the first tier IC to the second tier IC. An active portion of a voltage regulator is integrated in the first semiconductor IC and coupled to passive components (for example a capacitor or an inductor) embedded in a packaging substrate on which the stacked IC is mounted. The passive components may be multiple through vias in the packaging substrate providing inductance to the active portion of the voltage regulator. The inductance provided to the active portion of the voltage regulator is increased by coupling the through via in the packaging substrate to through vias in a printed circuit board that the packaging substrate is mounted on.
Abstract:
A bandgap sensor which measures temperatures within an integrated circuit is presented. The sensor may include a first transistor having an emitter node coupled in series to a first resistor and a first current source, wherein a PTAT current flows through the first resistor, and a second transistor having a base node coupled to a base node of the first transistor, and a collector node coupled to a collector node of the first transistor, further wherein the first and second transistors are diode connected. The sensor may further include a first operational amplifier providing negative feedback to the first current source, wherein the negative feedback is related to a difference in the base-emitter voltages of the first and second transistors, and a second operational amplifier which couples the base-emitter voltage of the second transistor across a second resistor, wherein a CTAT current flows through the second resistor.
Abstract:
Systems and method for a capacitor-less Low Dropout (LDO) voltage regulator. An error amplifier is configured to amplify a differential between a reference voltage and a regulated LDO voltage. Without including an external capacitor in the LDO voltage regulator, a Miller amplifier is coupled to an output of the error amplifier, wherein the Miller amplifier is configured to amplify a Miller capacitance formed at an input node of the Miller amplifier. A capacitor coupled to the output of the error amplifier creates a positive feedback loop for decreasing a quality factor (Q), such that system stability is improved.
Abstract:
A bandgap sensor which measures temperatures within an integrated circuit is presented. The sensor may include a first transistor having an emitter node coupled in series to a first resistor and a first current source, wherein a PTAT current flows through the first resistor, and a second transistor having a base node coupled to a base node of the first transistor, and a collector node coupled to a collector node of the first transistor, further wherein the first and second transistors are diode connected. The sensor may further include a first operational amplifier providing negative feedback to the first current source, wherein the negative feedback is related to a difference in the base-emitter voltages of the first and second transistors, and a second operational amplifier which couples the base-emitter voltage of the second transistor across a second resistor, wherein a CTAT current flows through the second resistor.