Abstract:
A microelectronic assembly or package can include first and second support elements and a microelectronic element between inwardly facing surfaces of the support elements. First connectors and second connectors such as solder balls, metal posts, stud bumps, or the like face inwardly from the respective support elements and are aligned with and electrically coupled with one another in columns. The first connectors, the second connectors or both may be partially encapsulated prior to electrically coupling respective pairs of first and second connectors in columns. A method may include arranging extremities of first connectors or second connectors in a temporary layer before forming the partial encapsulation.
Abstract:
Described herein are LED chips incorporating self-aligned floating mirror layers that can be configured with contact vias. These mirror layers can be utilized to reduce dim areas seen around the contact vias due to underlying material layers without the need for the mirror layer to be designed at some tolerance distance from the electrical via. This increases mirror area, eliminating lower light reflection in the proximity of the via and producing higher light output with greater light emission uniformity. In some embodiments, the mirror layer is formed with a contact via. This allows for a self-aligning process and results in the mirror layer extending substantially from the edge of the via.
Abstract:
Die (110) and/or undiced wafers and/or multichip modules (MCMs) are attached on top of an interposer (120) or some other structure (e.g. another integrated circuit) and are covered by an encapsulant (160). Then the interposer is thinned from below. Before encapsulation, a layer (410) more rigid than the encapsulant is formed on the interposer around the die to reduce or eliminate interposer dishing between the die when the interposer is thinned by a mechanical process (e.g. CMP). Other features are also provided.
Abstract:
In described examples, a method (100) for forming a stacked semiconductor package includes providing a bottom leadframe (LF) panel, including LFs downset each including terminals (101). Low side (LS) transistors are attached to the first die attach area (102). A first clip panel including first clips downset and interconnected are placed on the bottom LF panel (103). A dielectric interposer is attached on the first clips over the LS transistors (104). High side (HS) transistors are attached on the interposers (105). A second clip panel including second clips is mated to interconnect to the HS transistors, including mating together the second clip panel, first clip panel and bottom LF panel (106). The LFs can include a second die attach area, and a controller die attached on the second die attach area, and then pads of the controller die wire bonded to the terminals.
Abstract:
Die Erfindung betrifft ein Drahtbondingverfahren zum Herstellen einer elektrischen Verbindung zwischen einem ersten Bondkörper (210) mit einer ersten zu kontaktierenden Bondfläche (211) und einem zweiten Bondkörper (220) mit einer zweiten zu kontaktierenden Bondfläche (221), wobei die ersten und zweiten Bondflächen unterschiedliche Neigungen aufweisen, wobei das Verfahren die folgenden Schritte umfasst: (a) Bereitstellen eines Drahtbondingkopfs (200) mit zwei unterschiedlich geneigten Anpressflächen (201, 202) und einer Zuführung (207) für einen Bonddraht (203), wobei die Neigung der ersten Anpressfläche (201) im Wesentlichen der Neigung der ersten Bondfläche (211) entspricht und wobei die Neigung der zweiten Anpressfläche (202) im Wesentlichen der Neigung der zweiten Bondfläche (221) entspricht, (b) Herstellen einer ersten Bondverbindung zwischen dem Bonddraht (203) und dem ersten Bondkörper (210), wobei der Draht (203) mittels der ersten Anpressfläche (201) des Drahtbondingkopfs (200) durch Ultraschallbonding mit der ersten Bondfläche (211) verbunden wird, und (c) Herstellen einer zweiten Bondverbindung zwischen dem Draht (203) und dem zweiten Bondkörper (220), wobei der Draht (203) mittels der zweiten Anpressfläche (202) des Drahtbondingkopfs (200) durch Ultraschallbonding mit der zweiten Bondfläche (221) verbunden wird. Die Erfindung betrifft ferner einen Drahtbondingkopf (200) zur Durchführung des Verfahrens.
Abstract:
Shielded radio-frequency (RF) module having reduced area. In some embodiments, an RF module can include a packaging substrate configured to receive a plurality of components, and a plurality of shielding wirebonds implemented on the packaging substrate and configured to provide RF shielding functionality for one or more regions on the packaging substrate. The packaging substrate can include a first area associated with implementation of each shielding wirebond. The RF module can further include one or more devices mounted on the packaging substrate. The packaging substrate can further include a second area associated with mounting of each of the one or more devices. Each device can be mounted with respect to a corresponding shielding wirebond such that the second area associated with the device overlaps at least partially with the first area associated with the corresponding shielding wirebond.
Abstract:
In a multi-chip module (MCM), a "super" chip (110N) is attached to multiple "plain" chips (110F' "super" and "plain" chips can be any chips). The super chip is positioned above the wiring board (WB) but below at least some of plain chips (110F). The plain chips overlap the super chip. Further, the plain chips' low speed IOs can be connected to the WB by long direct connections such as bond wires (e.g. BVAs) or solder stacks; such connections can be placed side by side with the super chip. Such connections can be long, so the super chip is not required to be thin. Also, if through-substrate vias (TSVs) are omitted, the manufacturing yield is high and the manufacturing cost is low. Other structures are provided that combine the short and long direct connections to obtain desired physical and electrical properties.