Abstract:
An air filter media (10) including a pleated fibrous filtration web (8) with a first major side (2) that includes at least one sorbent-loaded area (26) in which sorbent particles (14) are present on a first major surface (25) of the pleated fibrous filtration web (8), at least some of the sorbent particles (14) being post-pleat-deposited sorbent particles.
Abstract:
A charge -modified particle comprising the inorganic core and a shell surrounding the inorganic core, wherein the shell comprises a copolymer comprising monomeric units corresponding to free- radically polymerizable monomers, and wherein at least one of the monomeric units comprises a substituted benzotriazolylphenolate salt. Methods of making the charge-modified particle by admicellar polymerization are also disclosed.
Abstract:
A nonwoven fibrous web and a method of making thereof. The nonwoven fibrous web includes greater than 0% but no greater than 30 wt% of a plurality of melt-blown fibers comprised of a crystalline (co)polymer; and at least 70 wt% of a plurality of randomly-oriented staple fibers, the plurality of randomly-oriented staple fibers including: at least 60 wt% of oxidized polyacrylonitrile fibers; and from 0 to 40 wt% of reinforcing fibers having an outer surface comprised of a (co) polymer with a melting temperature of from 100°C to 350°C; wherein the plurality of melt-blown fibers and the plurality of randomly-oriented staple fibers are bonded together to form a cohesive non-woven fibrous web.
Abstract:
Methods and apparatus including a chamber having a substantially open lower end positioned above a collector surface, at least one fiber inlet positioned above the lower end, a first multiplicity of rollers positioned within the chamber wherein each roller has a multiplicity of projections extending outwardly from a circumferential surface surrounding a center axis of rotation, a second multiplicity of rollers positioned within the chamber above the first multiplicity of rollers wherein each of the second multiplicity of rollers has a multiplicity of projections extending outwardly from a circumferential surface surrounding a center axis of rotation, the second multiplicity of rollers positioned so at least a portion of the projections extending outwardly from the circumferential surfaces of each of the second multiplicity of rollers vertically overlaps with at least a portion of the projections extending outwardly from the circumferential surface of at least one of the first multiplicity of rollers.
Abstract:
Provided are non-woven fibrous webs, methods and assemblies thereof. The non-woven fibrous web comprises a plurality of melt-blown fibers. The plurality of melt-blown fibers include a thermoplastic polymer blended with a phosphinate and/or polymeric phosphonate. The provided non-woven articles can afford a fine fiber diameter for enhanced acoustic insulation properties, dimensional stability, and superior flame-retardant properties when compared with conventional non-woven articles having similar fiber diameters.
Abstract:
A modified aluminum nitride particle comprises an aluminum nitride core and a shell surrounding the aluminum nitride core. The shell comprises a crosslinked organic polymer. Methods of making the modified aluminum nitride particle by admicellar polymerization are also disclosed.
Abstract:
Nonwoven fibrous webs including randomly oriented discrete fibers defining a multiplicity of non-hollow projections extending from a major surface of the nonwoven fibrous web (as considered without the projections), and a plurality of substantially planar land areas formed between each adjoining projection in a plane defined by and substantially parallel with the major surface. In some exemplary embodiments, the randomly oriented discrete fibers include multi-component fibers having at least a first region having a first melting temperature and a second region having a second melting temperature, wherein the first melting temperature is less than the second melting temperature. At least a portion of the oriented discrete fibers are bonded together at a plurality of intersection points with the first region of the multi-component fibers. In certain embodiments, the patterned air-laid nonwoven fibrous webs include particulates. Methods of making and using such patterned air-laid nonwoven fibrous webs are also disclosed.
Abstract:
A nonwoven fiber assembly. The nonwoven fiber assembly includes a nonwoven fibrous web including a plurality of discontinuous fibers; and a nonwoven fabric at least partially surrounding the nonwoven fibrous web; the nonwoven fabric including a plurality of randomly-oriented fibers, the plurality of randomly-oriented fibers comprising: at least 60 wt% of oxidized polyacrylonitrile fibers; and from 0 to less than 40 wt% of reinforcing fibers having an outer surface comprised of a (co)polymer with a melting temperature of from 100°C to 450°C; and a fluoropolymer binder on the plurality of randomly-oriented fibers.
Abstract:
Abrasive articles including a nonwoven fibrous substrate having a plurality of fibers, and a multiplicity of shaped abrasive particles, each shaped abrasive particle adhered to a corresponding fiber, each shaped abrasive particle having a length (L) and a width (W) determined in a direction substantially orthogonal to the length, the ratio of the length to the width defining an aspect ratio (L/W) of at least 1.1, each abrasive particle is oriented relative to its corresponding fiber, and more than 50% of the abrasive particles are oriented with respect to their corresponding fiber such that the abrasive particle length extends generally outwardly away from a surface of the corresponding fiber as determined visually using the Orientation Test. The shaped abrasive particles may have the geometric shape of a polygonal prism having two faces and at least three sides thereon. Methods of making the abrasive articles are also disclosed.
Abstract:
Methods and apparatus including a fiber opening chamber having an open upper end and a lower end, at least one fiber inlet for introducing a multiplicity of fibers into the opening chamber, a first multiplicity of rollers positioned within the opening chamber wherein each roller has a multiplicity of projections extending outwardly from a circumferential surface surrounding a center axis of rotation, at least one gas emission nozzle positioned substantially below the first multiplicity of rollers to direct a gas stream generally towards the open upper end of the opening chamber, and a forming chamber having an upper end and a lower end, wherein the upper end of the forming chamber is in flow communication with the open upper end of the opening chamber, and the lower end of the forming chamber is substantially open and positioned above a collector having a collector surface.