Abstract:
In some embodiments, a system includes a memory system, a real-time computing device, and a controller. The real-time computing device stores data within a local buffer having a corresponding storage threshold, where the data satisfies the storage threshold, and where the storage threshold is based on a latency of the memory system and an expected rate of utilization of the data of the local buffer. The controller detects that the memory system should perform an operation, where the memory system is unavailable to the real-time computing device during the operation. In response to detecting that an amount of time for the operation exceeds an amount of time corresponding to the storage threshold, the controller overrides the storage threshold. The controller may override the storage threshold by modifying the storage threshold and by overriding a default priority for access requests of the real-time computing device to the memory system.
Abstract:
A memory subsystem and method for performing calibrations therein is disclosed. A memory subsystem includes a memory controller coupled to a memory by a plurality of signal paths. The memory controller is configured to perform an initial calibration to determine respective eye patterns corresponding to the ones of the plurality of signal paths. For a subsequent calibrations, updated eye patterns are determined for a subset of the plurality of signal paths. Remaining ones of the plurality of signal paths (not included in the subset), are not active during the subsequent calibrations. Updated eye patterns for the remaining ones of the plurality of signal paths are determined based on information obtained during the initial calibration and information from signal paths in the subset designated proxies for the remaining ones of the plurality of signal paths.
Abstract:
Systems, apparatuses, and methods for improved memory controller power management techniques. An apparatus includes control logic, one or more memory controller(s), and one or more memory devices. If the amount of traffic and/or queue depth for a given memory controller falls below a threshold, the clock frequency supplied to the given memory controller and corresponding memory device(s) is reduced. In one embodiment, the clock frequency is reduced by one half. If the amount of traffic and/or queue depth rises above the threshold, then the clock frequency is increased back to its original frequency. The clock frequency may be adjusted by doubling the divisor used by a clock divider, which enables fast switching between the original rate and the reduced rate. This in turn allows for more frequent switching between the low power and normal power states, resulting in the memory controller and memory device operating more efficiently.