Abstract:
Disclosed herein is a computer-implemented method of image simulation for a device manufacturing process, the method comprising: identifying regions of uniform optical properties from a portion or an entirety of a substrate or a patterning device, wherein optical properties are uniform within each of the regions; obtaining an image for each of the regions, wherein the image is one that would be formed from the substrate if the entirety of the substrate or the patterning device has the same uniform optical properties as that region; forming a stitched image by stitching the image for each of the regions according to locations of the regions in the portion or the entirety of the substrate of the patterning device; forming an adjusted image by applying adjustment to the stitched image for at least partially correcting for or at least partially imitating an effect of finite sizes of the regions.
Abstract:
Disclosed herein is a computer-implemented method comprising: obtaining at least a characteristic of deformation of a resist layer (1050) in a first direction, as if there were no deformation in any directions perpendicular to the first direction; obtaining at least a characteristic of deformation of the resist layer in a second direction as if there were no deformation in the first direction, the second direction being perpendicular different to from the first direction; obtaining at least a characteristic of three-dimensional deformation of the resist layer based on the characteristic of the deformation in the first direction and the characteristic of the deformation in the second direction.
Abstract:
A method, including: obtaining a set of conditions for a resist development model for simulating a resist development process of a resist layer; and performing, by a hardware computer system, a computer simulation of the resist development process using the set of conditions and the resist development model to obtain a characteristic of the development of the resist layer, wherein the computer simulation separately simulates different certain different physical and chemical processes and characteristics of the resist development process.
Abstract:
Disclosed herein is a computer-implemented method for simulating a scattered radiation field of a patterning device comprising one or more features, in a lithographic projection apparatus, the method comprising: determining a scattering function of the patterning device using one or more scattering functions of feature elements of the one or more features; wherein at least one of the one or more features is a three-dimensional feature, or the one or more scattering functions characterize scattering of incident radiation fields at a plurality of incident angles on the feature elements.
Abstract:
A method including: obtaining characteristics of a portion of a design layout; determining characteristics of M3D of a patterning device including or forming the portion; by using a computer, training a neural network using training data including a sample whose feature vector includes the characteristics of the portion and whose supervisory signal comprises the characteristics of the M3D. Also disclosed is a method including: obtaining characteristics of a portion of a design layout; obtaining characteristics of a lithographic process that uses a patterning device including or forming the portion; determining characteristics of a result of the lithographic process; by using a computer, training a neural network using training data including a sample whose feature vector comprises the characteristics of the portion and the characteristics of the lithographic process, and whose supervisory signal comprises the characteristics of the result.
Abstract:
A method including: obtaining a thin-mask transmission function of a patterning device and a M3D model for a lithographic process, wherein the thin-mask transmission function is a continuous transmission mask (CTM) and the M3D model at least represents a portion of M3D attributable to multiple edges of structures on the patterning device; determining a M3D mask transmission function of the patterning device by using the thin-mask transmission function and the M3D model; and determining an aerial image produced by the patterning device and the lithographic process, by using the M3D mask transmission function.