Abstract:
Disclosed is a method of measuring a target on a substrate comprising: illuminating a target with measurement radiation comprising at least a first wavelength, collecting the resultant scattered radiation within a collection numerical aperture; and determining a parameter of interest from said scattered radiation. The target comprises a mediator periodic structure and at least a first target periodic structure each in a respective different layer on the substrate, wherein a pitch of at least the mediator periodic structure is below a single diffraction limit defined by the collection numerical aperture and a wavelength of said measurement radiation, such that said scattered radiation comprises double diffracted radiation, said double diffracted radiation comprising radiation having undergone two sequential same-order diffractions of opposite sign.
Abstract:
A method includes receiving an image formed in a metrology apparatus wherein the image comprises at least the resulting effect of at least two diffraction orders, and processing the image wherein the processing comprises at least a filtering step, for example a Fourier filter. The process of applying a filter may be obtained also by placing an aperture in the detection branch of the metrology apparatus.
Abstract:
Disclosed are a method, computer program and a metrology apparatus for measuring a process effect parameter relating to a manufacturing process for manufacturing integrated circuits on a substrate. The method comprises determining for a structure, a first quality metric value for a quality metric from a plurality of measurement values each relating to a different measurement condition while cancelling or mitigating for the effect of the process effect parameter on the plurality of measurement values and a second quality metric value for the quality metric from at least one measurement value relating to at least one measurement condition without cancelling or mitigating for the effect of the process effect parameter on the at least one measurement value. The process effect parameter value for the process effect parameter can then be calculated from the first quality metric value and the second quality metric value, for example by calculating their difference.
Abstract:
Disclosed is gas delivery system which is suitable for a high harmonic generation (HHG) radiation source which may be used to generate measurement radiation for an inspection apparatus. In such a radiation source, a gas delivery element delivers gas in a first direction. The gas delivery element has an optical input and an optical input, defining an optical path running in a second direction. The first direction is arranged relative to the second direction at an angle that is not perpendicular or parallel. Also disclosed is a gas delivery element having a gas jet shaping device, or a pair of gas delivery elements, one of which delivers a second gas, such that the gas jet shaping device or second gas is operable to modify a flow profile of the gas such that the number density of the gas falls sharply.
Abstract:
Apparatus, systems, and methods are used for detecting the alignment of a feature on a substrate using a polarization independent interferometer. The apparatus, system, and methods include optical elements that receive light that has diffracted or scattered from a mark on a substrate. The optical elements may split the diffracted light into multiple subbeams of light which are detected by one or more detectors. The diffracted light may be combined optically or during processing after detection. The system may determine alignment and/or overlay based on the received diffracted light having any polarization angle or state.
Abstract:
A lithographic apparatus includes a sensor, such as an alignment sensor including a self-referencing interferometer, configured to determine the position of an alignment target comprising a periodic structure. An illumination optical system focuses radiation of different colors and polarizations into a spot which scans the structure. Multiple position-dependent signals are detected and processed to obtain multiple candidate position measurements. Asymmetry of the structure is calculated by comparing the multiple position- dependent signals. The asymmetry measurement is used to improve accuracy of the position read by the sensor. Additional information on asymmetry may be obtained by an asymmetry sensor receiving a share of positive and negative orders of radiation diffracted by the periodic structure to produce a measurement of asymmetry in the periodic structure.
Abstract:
An apparatus to measure the position of a mark, the apparatus including an illumination arrangement to direct radiation across a pupil of the apparatus, the illumination arrangement comprising an illumination source to provide multiple-wavelength radiation of substantially equal polarization and a wave plate to alter the polarization of the radiation in dependency of the wavelength, such that radiation of different polarization is supplied; an objective lens to direct radiation on the mark using the radiation supplied by the illumination arrangement while scanning the radiation across the mark in a scanning direction; a radiation processing element to process radiation that is diffracted by the mark and received by the objective lens; and a detection arrangement to detect variation in an intensity of radiation output by the radiation processing element during the scanning and to calculate from the detected variation a position of the mark in at least a first direction of measurement.
Abstract:
Disclosed is a method of inferring a value for at least one local uniformity metric relating to a product structure, the method comprising: obtaining intensity data comprising an intensity image relating to at least one diffraction order obtained from a measurement on a target; obtaining at least one intensity distribution from said intensity image; determining from said at least one intensity distribution an intensity indicator expressing a variation of either intensity over the at least one diffraction order, or a difference in intensity between two complimentary diffraction orders over the intensity image; and inferring the value for the at least one local uniformity metric from the intensity indicator.
Abstract:
Methods and systems for determining information about a target structure are disclosed. In one arrangement, a value of an asymmetry indicator for the target structure is obtained. The value of the asymmetry indicator represents an amount of an overlay independent asymmetry in the target structure. An error in an initial overlay measurement performed on the target structure at a previous time is estimated. The estimation is performed using the obtained value of the asymmetry indicator and a relationship between values of the asymmetry indicator and overlay measurement errors caused at least partially by overlay independent asymmetries. An overlay in the target structure is determined using the initial overlay measurement and the estimated error.
Abstract:
Disclosed is a method, and associated apparatuses, for measuring a parameter of interest relating to a structure having at least two layers. The method comprises illuminating the structure with measurement radiation and detecting scattered radiation having been scattered by said structure. The scattered radiation comprises normal and complementary higher diffraction orders. A scatterometry model which relates a scattered radiation parameter to at least a parameter of interest and an asymmetry model which relates the scattered radiation parameter to at least one asymmetry parameter are defined, the asymmetry parameter relating to one or more measurement system errors and/or an asymmetry in the target other than a misalignment between the two layers. A combination of the scatterometry model and asymmetry model is used to determine a system of equations, and the system of equations is then solved for the parameter of interest.