Abstract:
A method of installing a downhole device comprises introducing a downhole device into a wellbore, the downhole device comprising a substrate and a shape memory polymer in a deformed state disposed on the substrate; combining a modified activation material in the form of a powder, a hydrogel, an xerogel, or a combination comprising at least one of the foregoing with a carrier to provide an activation fluid; introducing the activation fluid into the wellbore; releasing an activation agent in a liquid form from the modified activation material; and contacting the shape memory polymer in the deformed state with the released activation agent in an amount effective to deploy the shape memory polymer.
Abstract:
Devices and methods for detecting chemicals are disclosed. A device configured for use in a wellbore includes a sensor including a quantum tunneling composite (QTC) material configured to exhibit a change in electrical resistance responsive to the sensor contacting a target chemical. The sensor includes electrical resistance measuring circuitry operably coupled to the QTC material and configured to measure the electrical resistance of the QTC material and output a sensor signal indicating the electrical resistance. A method comprises deploying the sensor into the wellbore, measuring the electrical resistance of the QTC material, and determining the presence of the target chemical responsive to detecting changes in the electrical resistance of the QTC material. Another method includes selecting at least one of the QTC material and an active material to interact with a target wellbore chemical to change the electrical resistance of the QTC material.
Abstract:
A coated article comprises a substrate and a self-healing coating disposed on a surface of the substrate, the self-healing coating comprising a metallic matrix; and a plurality of micro- or nano-sized particles dispersed in the metallic matrix; the micro- or nano-sized particles comprising an active agent disposed in a carrier comprising a micro- or nano-sized metallic container, a layered structure, a porous structure, or a combination comprising at least one of the foregoing.
Abstract:
A suspension for removing hydrocarbons from a subterranean formation includes a fluid comprising at least one of water, brine, steam, carbon dioxide, a light hydrocarbon, and an organic solvent; and a plurality of nanoparticles dispersed with the fluid. Nanoparticles of the plurality comprise silica and carbon. A method includes forming a plurality of nanoparticles and dispersing the plurality of nanoparticles with a fluid to form a suspension comprising the nanoparticles. A method of recovering a hydrocarbon material includes introducing a suspension into a subterranean formation containing hydrocarbons, forming a stabilized emulsion of the suspension and the hydrocarbons within the subterranean formation; and removing the emulsion from the subterranean formation. The suspension comprises a plurality of nanoparticles, and at least some nanoparticles of the plurality comprise silica and carbon.
Abstract:
A method and apparatus for estimating a concentration of chemicals in a fluid flowing in a fluid passage is disclosed. A sample of the fluid is placed on a substrate comprising a first layer of carbon nanotubes and a second layer of metal nanowires. An energy source radiates the fluid sample with electromagnetic radiation at a selected energy level, and a detector measures an energy level of radiation emitted from the fluid sample in response to the electromagnetic radiation. A processor determines a Raman spectrum of the fluid sample from the energy level of the emitted radiation and estimates the concentration of a selected chemical in the fluid sample based on the Raman spectrum.
Abstract:
A deformable downhole article for use in a wellbore includes a tubular component configured for placement in a wellbore, a deformable material disposed around an outer surface of the tubular component, and an electrically conductive element comprising a carbon nanotube (CNT) material bonded to the deformable material. To form such a deformable downhole article, a deformable material is disposed around an outer surface of a tubular component, and an electrically conductive element comprising a carbon nanotube (CNT) material is bonded to the deformable material. In use, the deformable downhole article may be positioned within a wellbore, and the deformable material may be expanded to an expanded state. Expansion of the deformable material may strain the carbon nanotube (CNT) material of the electrically conductive element, and an electrical property of the electrically conductive element may be measured to deduce information about the state of the deformable material.
Abstract:
Carbon quantum dots are used as tracers during the production of hydrocarbons. The tracer may be used to identify fluids produced from the reservoir. When used in the fracturing of multiple zones of the reservoir, qualitatively distinguishable carbon quantum dots may be used to identify the zone within the reservoir from which recovered fluid was produced. The carbon quantum dots may also be used in water flooding to determine water breakthrough in the production well. Upon water breakthrough in a production well, they may also be used to identify those injection wells from which breakthrough water originates.