摘要:
The present invention relates to compounds of general formula (I) wherein R 100 and R 200 are each independently hydrogen, C 1 -C 10 -alkyl which in case of C 2 -alkyl may be interrupted by one and in case of C 3 -C 10 -alkyl by one or two non- adjacent oxygen atoms, C 5 -C 7 -cycloalkyl, aryl, aryl-C 1 -C 10 -alkyl or aryloxy-C 1 -C 10 -alkyl, D is an m-valent (m = 1, 2 or 3) donor moiety which comprises at least one carbon- carbon or carbon-heteroatom double bond and/or at least one unfused or fused carbo- or heterocyclic ring, A is an acceptor moiety which comprises at least one carbon- carbon or carbon-heteroatom double bond and/or at least one unfused or fused carbo- or heterocyclic ring, and the donor moiety D and the acceptor moiety A are π- conjugated to one another. Furthermore, the present invention relates to the use of compounds of formula (I) for producing dye-sensitized solar cells and to dye-sensitized solar cells comprising compounds of formula (I).
摘要:
An optical detector(110) is disclosed, comprising: at least one optical sensor(122) adapted to detect a light beam(120) and to generate at least one sensor signal, wherein the optical sensor(122) has at least one sensor region(124), wherein the sensor signal of the optical sensor(122) exhibits a non-linear dependency on an illumination of the sensor region(124) by the light beam (120) with respect to a total power of the illumination; at least one image sensor(128) being a pixelated sensor comprising a pixel matrix(174) of image pixels(176), wherein the image pixels(176) are adapted to detect the light beam(120) and to generate at least one image signal, wherein the image signal exhibits a linear dependency on the illumination of the image pixels(176) by the light beam(1,6) with respect to the total power of the illumination; and at least one evaluation device(132), the evaluation device(132) being adapted to evaluate the sensor signal and the image signal. In a particularly preferred embodiment, the non-linear dependency of the sensor signal on the total power of the illumination of the optical sensor(122) is expressible by a non-linear function comprising a linear part and a non-linear part, wherein the evaluation device(132) is adapted to determine the linear part and/or the non-linear part of the non-linear function by evaluating both the sensor signal and the image signal. Herein, the evaluation device(132), preferably, comprises a processing circuit(136) being adapted to provide a difference between the sensor signal and the image signal for determining the non-linear part of the non-linear function.
摘要:
A verification device (110) for verifying the identity of an article (114) is disclosed. The verification device (110) comprises: at least one illumination source (116) for illuminating at least one safety mark (124) of the article (114) with at least one light beam (122); at least one detector (118) adapted for detecting after an interaction of the light beam (122) with the safety mark (124), the detector (118) having at least one optical sensor (128), wherein the optical sensor (128) has at least one sensor region (130), wherein the optical sensor (128) is designed to generate at least one sensor signal in a manner dependent on an illumination of the sensor region (130) by the light beam (122), wherein the sensor signal, given the same total power of the illumination,is dependent on a beam cross-section of the light beam (122) in the sensor region (130); and at least one evaluation device (120) adapted for evaluating the sensor signal and for verifying the identity of the article (114) on the basis of the sensor signal. Further, a verification system (112), a method for verifying the identity of an article (114) and a use of an optical sensor (128) for verifying the identity of an article (114) are disclosed.
摘要:
A data readout device (114) for reading out data from at least one data carrier (112) having data modules (116) located at least two different depths within the at least one data carrier (112) is disclosed. The data readout device (114) comprises: -at least one illumination source (122) for directing at least one light beam (124) onto the data carrier (112); -at least one detector (130) adapted for detecting at least one modified light beam modified by at least one of the data modules (116), the detector (130) having at least one optical sensor (132), wherein the optical sensor (132)has at least one sensor region (134), wherein the optical sensor (132)is designed to generate at least one sensor signal in a manner dependent on an illumination of the sensor region (134)by the modified light beam, wherein the sensor signal, given the same total power of the illumination,is dependent on a beam cross-section of the modified light beam in the sensor region (134); and -at least one evaluation device (136) adapted for evaluating the at least one sensor signal and for deriving data stored in the at least one data carrier (112) from the sensor signal. Further, a data storage system (110), a method for reading out data from at least one data carrier (112) and a use of an optical sensor (132) for reading out data are disclosed.
摘要:
The present invention relates to an electrode layer comprising a porous film made of oxide semiconductor fine particles sensitized with a methine dye having a counter anion capable of absorbing electromagnetic radiation having a wavelength in the range of from 400 nm to 1000 nm. Moreover the present invention relates to a photoelectric conversion device comprising said electrode layer, a dye sensitized solar cell comprising said photoelectric conversion device, an organic electronic device comprising said photoelectric conversion device and to novel methine dyes having a counter anion capable of absorbing electromagnetic radiation having a wavelength in the range of from 400 nm to 1000 nm.
摘要:
A detector (110) for determining a position of at least one object (112) is proposed. The detector (110) comprises: - at least one transversal optical sensor (130), the transversal optical sensor (130) being adapted to determine a transversal position of at least one light beam (138) traveling from the object (112) to the detector (110), the transversal position being a position in at least one dimension perpendicular to an optical axis (116) of the detector (110), the transversal optical sensor (130) being adapted to generate at least one transversal sensor signal; - at least one longitudinal optical sensor (132), wherein the longitudinal optical sensor (132) has at least one sensor region (136), wherein the longitudinal optical sensor (132) is designed to generate at least one longitudinal sensor signal in a manner dependent on an illumination of the sensor region (136) by the light beam (138), wherein the longitudinal sensor signal, given the same total power of the illumination, is dependent on a beam cross-section of the light beam (138) in the sensor region (136); - at least one evaluation device (142), wherein the evaluation device (142) is designed to generate at least one item of information on a transversal position of the object (112) by evaluating the transversal sensor signal and to generate at least one item of information on a longitudinal position of the object (112) by evaluating the longitudinal sensor signal.
摘要:
A photovoltaic element (110) is proposed for conversion of electromagnetic radiation to electrical energy. The photovoltaic element (1 10) may especially be a dye solar cell (1 12). The photovoltaic element (110) has at least one first electrode (1 16), at least one n-semiconductive metal oxide (120), at least one electromagnetic radiation-absorbing dye (122), at least one solid organic p-semiconductor (126) and at least one second electrode (132). The p-semiconductor (126) comprises at least one metal oxide (130).
摘要:
A photovoltaic element (110) for conversion of electromagnetic radiation (130) to electrical energy is proposed, comprising at least one first electrode (116), at least one n-semiconductive metal oxide (120), further comprising at least one dye (112) for absorption of at least a portion of the electromagnetic radiation (130), further comprising at least one organic hole conductor material (126) and at least one second electrode (132). The organic hole conductor material (126) in said photovoltaic element (110) has an absorption spectrum for the electromagnetic radiation (130) which has an absorption maximum in an ultraviolet or blue spectral region and then, toward higher wavelengths, an absorption edge declining with the wavelength of the electromagnetic radiation (130) and having a characteristic wavelength λ HTL . A decadic absorbance of the hole conductor material (126) at a wavelength λ HTL within the declining absorption edge is 0.3. The photovoltaic element (110) further has at least one longpass filter (128). The longpass filter (128) has a transmission edge rising with the wavelength of the electromagnetic radiation (130) and having a characteristic wavelength λ LP , a transmission of the longpass filter (128) at A Lp being 50% of a maximum transmission of the longpass filter (128), where λ HTL - 30 nm ≤ λ LP ≤ λ HTL + 30 nm.
摘要:
A detector (110) for an optical detection of at least one object (112)is proposed. The detector (110) comprises: - at least one transfer device (120), wherein the transfer device (120) comprises at least two different focal lengths (140) in response to at least one incident light beam (136); - at least two longitudinal optical sensors (132), wherein each longitudinal optical sensor (132) has at least one sensor region (146), wherein each longitudinal optical sensor (132) is designed to generate at least one longitudinal sensor signal in a manner dependent on an illumination of the sensor region (146) by the light beam (136), wherein the longitudinal sensor signal, given the same total power of the illumination, is dependent on a beam cross-section of the light beam (136) in the sensor region (146), wherein each longitudinal optical sensor (132) exhibits a spectral sensitivity in response to the light beam (136)in a manner that two different longitudinal optical sensors (132) differ with regard to their spectral sensitivity;wherein each optical longitudinal sensor (132) is located at a focal point(138) of the transfer device (120) related to the spectral sensitivity of the respective longitudinal optical sensor (132); and - at least one evaluation device (150), wherein the evaluation device (150) is designed to generate at least one item of information on a longitudinal position and/or at least one item of information on a color of the object (112) by evaluating the longitudinal sensor signal of each longitudinal optical sensor (132). Thereby, a simple and, still, efficient detector for an accurate determining of a position and/or a color of at least one object in space is provided.
摘要:
A detector (110) for determining a position of at least one object (112), the detector (110) comprising: at least one transfer device (114) for imaging the object (112) into an image plane (116), the transfer device (114) having a focal plane (118), at least one longitudinal optical sensor (122), wherein the longitudinal optical sensor (122) has at least one sensor region (124), wherein the longitudinal optical sensor (122) is at least partially transparent, wherein the longitudinal optical sensor (122) is designed to generate at least one longitudinal sensor signal in a manner dependent on an illumination of sensor region (124) by at least one light beam propagating from the object to the detector (110), wherein the longitudinal sensor signal, given the same total power of the illumination, is dependent on a beam cross-section of the light beam in the sensor region (124); and at least one evaluation device (129), wherein the evaluation device (129) is designed to generate at least one item of information on a longitudinal position of the object (112) by evaluating the longitudinal sensor signal. Herein the at least one longitudinal optical sensor (122) comprises a focal longitudinal optical sensor (136), wherein the focal longitudinal optical sensor (136) at least substantially is arranged in the focal plane (118).