Abstract:
A method of operating a vehicle. The vehicle includes an engine. The method including determining if the engine is to be operated at idle and determining a current mode of operation of the vehicle. The current mode of operation is any one of a plurality of modes of operation including at least a first mode and a second mode. The method includes, if the engine is to be operated at idle, operating the engine at a first idle speed if the current mode of operation of the vehicle is the first mode of operation; and operating the engine at a second idle speed if the current mode of operation of the vehicle is the second mode of operation. The first idle speed is greater than the second idle speed.
Abstract:
A snowmobile includes a frame with a tunnel, a fuel tank disposed thereon and an engine connected thereto. A throttle body fluidly communicates with the engine. A throttle valve is disposed in the throttle body for regulating fluid flow through the throttle body into the engine, a position of the throttle valve being movable between an open position and a closed position. A throttle operator connected to the frame to control the position of throttle valve is moveable between an idle position and a drive position. A throttle valve actuator operatively connected to the throttle valve and the throttle operator controls a position of the throttle valve based at least in part on the throttle operator position, the throttle valve actuator being disposed longitudinally between the fuel tank and the engine. Vehicles and methods of operating the vehicles are also disclosed.
Abstract:
A snowmobile (10) having an electronic oil pump (72) fluidly connected to an oil tank (70) thereof is disclosed. The electronic oil pump (72) is fluidly connected to an engine (24) of the snowmobile (10) for delivering lubricant to the engine (24). An electronic control unit (150) is electrically connected to the electronic oil pump (72) for controlling actuation of the electronic oil pump (72). A method of operating an electronic oil pump (72) is also disclosed.
Abstract:
A method and a system for starting an internal combustion engine (ICE) having a crankshaft and an electric turning machine (ETM) operatively connected to the crankshaft are disclosed. An absolute angular position of the crankshaft related to a top dead center position of a piston in a combustion chamber of the ICE is determined. Electric power is delivered to the ETM at a first level to rotate the crankshaft. Electric power is then delivered to the ETM at a second level greater than the first level when the piston reaches a predetermined position before the TDC position. Fuel is injected in the combustion chamber after the piston has passed beyond the TDC position. The fuel is then ignited. In an implementation, the ICE is started in less than 110 degrees of rotation of the crankshaft.
Abstract:
A method and a system for operating an electric turning machine (ETM) operatively connected to an internal combustion engine (ICE) are disclosed. The ETM operates as a motor with a first control strategy and as a generator with a second control strategy, the second control strategy being distinct from the first control strategy. The system comprises an engine control unit adapted for controlling an operation of the ETM according to the first and second control strategies. Electric and assisted start procedures are available for starting the ICE by delivering electric power from a power source to the ETM which is co-axially mounted to a crankshaft of the ICE. Assisted start includes delivering the electric power to the ETM while a recoil starter is used to rotate the crankshaft. A manual start procedure is also available. The power source is charged by the ETM when the ICE is running.