Abstract:
An example a system includes a neuromodulation generator that may be configured to use electrodes to generate a first modulation field over a test region of neural tissue along the electrodes to prime the neural tissue throughout the test region and a second modulation field to test targeted locations within the test region for therapeutic effectiveness. A memory may be configured to store a first modulation field parameter for generating the first modulation field and a second modulation field parameter set for generating the second modulation field to modulate a targeted location within the test region. The second modulation field parameter set is programmable for modulating other targeted locations. The controller may be configured to control the neuromodulation generator to use the first modulation field parameter set to deliver the first modulation field and to use the second modulation field parameter set to deliver the second modulation field.
Abstract:
An example of a system may include an arrangement of electrodes configured to be operationally positioned for use in modulating targeted neural tissue, a neural modulator, a communication module, and a controller. The neural modulator may be configured to use at least some electrodes within the arrangement of electrodes to generate a modulation field. The communication module may be configured to receive user-provided selections. The controller may be configured to use the communication module to receive a user-provided selection of a desired electrode list where the electrode list identifies electrodes within the arrangement of electrodes that are available for use in modulating the targeted neural tissue, control the neural stimulation modulator to generate the modulation field, and use the electrodes identified in the electrode list to modulate the targeted neural tissue.
Abstract:
An example of a system may include electrodes on at least one lead configured to be operationally positioned for use in modulating neural tissue where the neural tissue including dorsal horn tissue or nerve root tissue, a neural modulation generator, and a controller. The neural modulation generator may be configured to use at least some electrodes to generate a modulation field. The neural modulation generator maybe configured to use a programmed modulation parameter set to promote uniformity of the modulation field in the dorsal horn tissue. The controller may be configured to control the neural modulation generator to generate the modulation field in pulse trains of at least two pulses.
Abstract:
An example of a system may include electrodes on at least one lead configured to be operationally positioned for use in modulating a volume of neural tissue, where the neural tissue has an activation function. The system may further include a neural modulation generator configured to deliver energy using at least some electrodes to generate a modulation field within the volume of neural tissue. The neural modulation generator may be configured to use a programmed modulation parameter set to generate the modulation field. The programmed modulation parameter set having values selected to control energy delivery using the at least some electrodes to achieve an objective function specific to the activation function of the volume of neural tissue to promote uniformity of a response to the modulation field in the volume of neural tissue along a span of the at least one lead.
Abstract:
An example of a system for applying neuromodulation to a patient includes a modulation output circuit and a modulation control circuit. The modulation output circuit may be configured to deliver dorsal horn stimulation. The modulation control circuit may be configured to control the delivery of the dorsal horn stimulation by executing a neuromodulation algorithm using modulation parameters. The modulation control circuit may include a response input and a parameter calibrator. The response input may be configured to receive response information indicative of one or more responses to the stimulation of the dorsal horn. The parameter calibrator may be configured to adjust one or more of the modulation parameters using the response information.
Abstract:
A neuromodulation system executes a set of startup operations. In response to completion of the startup operations, a priming field is automatically initiated. The priming field is to produce a priming effect in priming-targeted neural tissue, with the priming effect causing a change in sensitization to a therapeutic neuromodulation field of the priming-targeted neural tissue. The system also generates the therapeutic neuromodulation field to produce a therapeutic effect in therapy-targeted neural tissue.
Abstract:
A system includes a processor and a memory device comprising instructions, which when executed by the processor, cause the processor to: access a patient metric of a subject; use the patient metric as an input to a machine learning algorithm, the machine learning algorithm to search a plurality of neuromodulation parameter sets and to identify a candidate neuromodulation parameter set of the plurality of neuromodulation parameter sets, the candidate neuromodulation parameter set designed to produce a non-regular waveform that varies over a time domain and a space domain; and program a neuromodulator using the candidate neuromodulation parameter set to stimulate the subject.
Abstract:
An example of a system may include an electrode arrangement and a neuromodulation device configured to use electrodes in the electrode arrangement to generate a neuromodulation field. The neuromodulation device may include a neuromodulation generator, a neuromodulation control circuit and a storage. The storage may include a stochastically-modulated neuromodulation parameter set and the stochastically-modulated neuromodulation parameter set may include at least one stochastically-modulated parameter. The controller may be configured to control the neuromodulation generator using the stochastically-modulation parameter set to generate the neuromodulation field.
Abstract:
An Optical Head-Mounted Display (OHMD) for use as external controller for an Implantable Medical Device (IMD) is disclosed which includes an IMD communication accessory with a USB connector coupleable to a USB port on the OHMD. The accessory includes a housing with a communication antenna and telemetry transceiver circuitry to allow for direct communications with the IMD. The housing includes a battery for powering the transceiver circuitry and antenna. A cable may be coupled to the housing to allow the housing to be located proximate to patient's IMD when the communication means used in the IMD is relatively short range (e.g., magnetic induction). The housing may be cableless and comprise a dongle coupleable to a port on the OHMD if the communication means provided in the housing and used in the IMD are longer range (e.g., MICS).
Abstract:
A method of providing therapy to a patient having a medical condition comprises delivering electrical stimulation energy to the spinal cord of the patient in accordance with a stimulation program that preferentially stimulates dorsal horn neuronal elements over dorsal column neuronal elements in the spinal cord. The delivered electrical stimulation energy generates a plurality of electrical fields having different orientations that stimulate the dorsal horn neuronal elements.