Abstract:
Hemostasis valves and methods for making and using hemostasis valves are disclosed. An example hemostasis valve may include a main body having a distal end region and a proximal end region. A first seal member may be disposed within the proximal end region of the main body. A cartridge may be at least partially disposed within the proximal end region of the main body. The cartridge may include a second seal member. A plunger may be coupled to the proximal end region of the main body. A rotation limiting member may be positioned adjacent to the proximal end region of the main body. A tab member may be positioned adjacent to the proximal end region of the main body. The tab member may be designed to rotate relative to the proximal end region of the main body until the tab member engages the rotation limiting member.
Abstract:
Hemostasis valves and methods for making and using hemostasis valves are disclosed. An example hemostasis valve may include a main body having a distal end region and a proximal end region. A first seal member may be disposed within the proximal end region of the main body. A cartridge may be at least partially disposed within the proximal end region of the main body. The cartridge may include a second seal member. The cartridge may have one or more projections formed thereon. The proximal end region of the main body may have one or more recesses formed therein. The one or more recesses may be designed to engage the one or more projections. A plunger may be coupled to the proximal end region of the main body.
Abstract:
A hemostasis valve for use in a medical device. The hemostasis valve may include a generally cylindrical body having a proximal side, a distal side, and a thickness extending therebetween. The proximal side may include a tapered central region having a surface sloped towards a center of the body and the distal side may include a distally extending curved central region.
Abstract:
A hemostasis valve assembly for use in a medical device. The hemostasis valve assembly may include a main body portion defining an internal cavity, a seal cartridge disposed within the internal cavity, and a low pressure valve assembly positioned within the internal cavity adjacent to the seal cartridge. The low pressure valve assembly may include a first valve member having a first valve body and a second valve member having second valve body. A portion of a distal side of the first valve member may abut at least a portion of a proximal side of the second valve member.
Abstract:
In at least one embodiment, a stent comprises an expandable framework comprising a plurality of serpentine bands and a plurality of connector struts. Each serpentine band comprises a plurality of alternating struts and turns. A plurality of the serpentine bands each have their proximal turns aligned on a common stent circumference and comprise first distal turns and second distal turns. The first distal turns are aligned with one another on a common stent circumference. The second distal turns aligned with one another on another common stent circumference. Each band in the plurality comprises first struts and second struts. Each first strut is attached between a proximal turn and a first distal turn, and each second strut is attached between a proximal turn and a second distal turn. The second struts are wider than said first struts.
Abstract:
A medical device (10) may include an elongate delivery sheath (12) and a valve replacement implant (16) disposed within a lumen of the delivery sheath, the implant including an anchor member (70) reversibly actuatable between a delivery configuration and a deployed configuration. The implant may include at least one locking element (58) configured to lock the anchor member in the deployed configuration, and at least one actuator element (84) configured to engage the at least one locking element and actuate the anchor member between the delivery configuration and the deployed configuration. The at least one actuator element may include an unlocking member (50) configured to compress a first locking portion of the at least one locking element to unlock the anchor member from the deployed configuration.
Abstract:
A medical device system (10) may include a valve replacement implant including an anchor member (70) reversibly actuatable between a delivery configuration and a deployed configuration, wherein the implant includes at least one locking element (58) configured to lock the anchor member in the deployed configuration, and at least one actuator element (84) configured to engage the at least one locking element and actuate the anchor member between the delivery configuration and the deployed configuration. The at least one actuator element may include a self-biased cam mechanism (86) configured to extend into and engage a first locking portion of the at least one locking element.
Abstract:
A transcatheter valve frame (10) comprising a valve frame comprising an elongate tubular member having a longitudinal axis and a circumference, the elongate tubular member comprising a plurality of struts (16) interconnected by peaks (18a) and valleys (18b) that define a closed cell construction comprising a plurality of interconnected cells (14), the valve frame is formed from a single piece of material comprising a metal or metal alloy, the valve frame having a diameter that increases upon axial compression and the valve frame comprising a locking mechanism integral with the valve frame configured to fix the diameter of the valve frame.
Abstract:
A medical system configured for nerve modulation can include an elongate shaft, having a distal end region and a proximal end region is disclosed. Adjacent the distal end region an ablation electrode can be disposed. The system can further include a first optical fiber, having a proximal end and a distal end, extending along an outer surface of the elongate shaft, and in turn a number of (fiber Bragg Grating) FBG sensors therein. The FBG sensors can be positioned adjacent to the ablation electrode. An optical read out mechanism can be optically coupled to the optical fiber to transmit light into the optical fiber and detect light reflected from the FBG sensor. Here, the detected light, reflected from FBG temperature sensors, encodes local temperatures at each of the FBG temperature sensors.
Abstract:
Hemostasis valves and methods for making and using hemostasis valves are disclosed. An example hemostasis valve may include a main body having a proximal end region. A cartridge may be at least partially disposed within the proximal end region. The cartridge including a seal member. The cartridge may have a proximal member, a distal member, and may define a seal holding region. The seal member may have an axial thickness of about 0.04 to about 0.2 inches. The seal member may be secured within the seal holding region by a mechanical bond.