Abstract:
A Class-E amplifier has bee adapted for use in the radio frequency section of a magnetic resonance imaging (MRI) system. A drive signal is produces by modulating the envelope of a radio frequency carrier signal and then applied to a switch in the Class-E amplifier. The switch is connected in series with a choke between a supply voltage terminal and circuit ground with an output node formed between the choke and the switch. The output node is coupled to circuit ground by a shunt capacitor. In a preferred embodiment, a pair of such amplifiers, that are II radians out of phase, are connected to each rung of a transverse electromagnetic transmit array type radio frequency coil of the MRI system.
Abstract:
An implantable electronic medical device is compatible with a magnetic resonance imaging (MRI) scanner. The device has a housing with exterior walls, each formed by a dielectric substrate with electrically conductive layers on interior and exterior surfaces. A series of slots divide each layer into segments. Segmenting the layers provides high impedance to eddy currents produced by fields of the MRI scanner, while capacitive coupling of the segments provides radio frequency shielding for components inside the housing. Electrical leads extending from the housing have a pair of coaxially arranged conductors and traps that attenuate currents induced in the conductors by the fields of the MRI scanner.
Abstract:
An electrical lead for implantation into an animal includes a cable to which a stimulation electrode is connected. The cable has a helical electrical conductor enclosed within an insulating sheath. The stimulation electrode has a tubular first contact band with a threaded lumen into which a portion of the helical electrical conductor is screwed. A second contact band has a threaded aperture and a helical electrode coil is screwed into both the threaded lumen and the threaded aperture. The two contact bands are separated so as to expose a portion of the electrode coil to enable electrical stimulation of tissue of the animal. Particular configurations of the helical electrode coil and the helical electrical conductor render the electrical lead compatible with MRI scanning.
Abstract:
An implantable device provides artificial electrical stimulation of animal tissue using a plurality of electrodes. A sensing unit detects a physiological parameter at a stimulation site. A control unit governs the stimulation, in response to the detected physiological parameter, by selecting certain pairs of the electrodes and by defining the shape, duration, and duty cycle of a segmented stimulation waveform. A stimulation signal generator produces the segmented stimulation waveform that has a first segment and a second segment that with respect to the first segment is longer in duration lesser in magnitude and opposite in polarity.
Abstract:
An abnormally rapid ventricular cardiac rate that results from atrial fibrillation can be reduced by stimulating a vagal nerve of the heart. An apparatus for such stimulation includes a power transmitter that emits a radio frequency signal. A stimulator, implanted in a blood vessel adjacent the vagal nerve, has a pair of electrodes and an electrical circuit thereon. The electrical circuit receives the radio frequency signal and derives an electrical voltage from the energy of that signal. The electrical voltage is applied in the form of pulses to the pair of electrodes, thereby stimulating the vagal nerve. The pattern of that stimulating pulses can be varied in response to characteristics of the atrial fibrillation or the ventricular contractions.
Abstract:
An implantable biocompatible lead that is also compatible with a magnetic resonance imaging scanner for the purpose of diagnostic quality imaging is described. The implantable electrical lead comprises a plurality of coiled insulated conducting wires wound in a first direction forming a first structure of an outer layer of conductors of a first total length with a first number of turns per unit length and a plurality of coiled insulated conducting wires wound in a second direction forming a second structure of an inner layer of conductors of a second total length with a second number of turns per unit length. The first and the second structures are separated by a distance with a layer of dielectric material. The distance and dielectric material are chosen based on the field strength of the MRI scanner. The lead may further comprise a conducting layer formed by coating a material consisting of medium conducting particles in physical contact with each other and a mechanically flexible, biocompatible layer forming an external layer of lead and in contact with body tissue or body fluids.
Abstract:
An apparatus configured to detect transitions between relatively rising and falling amplitudes of an input signal Vin(t) arriving at a input node comprises a comparator having a first input, a second input, and an output for providing a two state output signal Vout(t) wherein state changes in the output signal Vout(t) correspond to the relatively rising amplitude of the input signal Vin(t) and the relatively falling amplitude of the input signal Vin(t). A delay circuit provides a shifted signal Vin(t+Δt) to the second input of the comparator, and a hysteresis circuit provides hysteretic deadband appended input signal Vin+ΔV to the first input of the comparator.
Abstract:
An apparatus provides an electrical interface with a lumen in a body of an animal. The apparatus has a self-anchoring lead structure for implantation inside the lumen and includes at least two insulated conductors each connected to a separate electrode. Each electrode has an associated shape memory material and a rounded terminus to grip the lumen wall for anchoring the lead when properly positioned. The conductor for each electrode also is connected to a control circuit that programmably selects electrodes for electrically interfacing with the lumen. The self-anchoring lead structure has a contracted state for insertion into the animal and an expanded stated in which the electrode termini engage a wall of the lumen.
Abstract:
A medical device, such as a cardiac pacing device for an animal, includes an intravascular antenna that has a first coil for engaging a wall of a first blood vessel to receive a radio frequency signal. The first coil includes a first winding wound helically in a rotational direction along a longitudinal axis from a first end of the coil to a second end. A second winding that is connected to the a first winding at the second end, is wound helically in the same rotational direction along the longitudinal axis from the second end to the first end. An electronic circuit is implanted in the animal and is connected to the antenna to receive an electrical signal therefrom.
Abstract:
An electrical lead (571), for implantation in an animal, is compatible with an MRI scanner. The electrical lead has a first plurality (573) of coiled insulated wires forming an outer layer of conductors that has a first inductance and a first capacitance, which act as a first parallel resonator tuned to a Larmor frequency of tissue in the animal. The lead may have a second plurality (575) of coiled insulated wires forming an inner layer of conductors within the outer layer of conductors. The second plurality of coiled insulated wires has a second inductance and a second capacitance that act as a second parallel resonator tuned to the Larmor frequency. Those parallel resonators mitigate signals at the Larmor frequency from traveling along the respective coil. An electrically conductive layer (572) extends around the inner and/or outer layer of conductors, and a layer (570) of a biologically compatible material forms the electrical lead's exterior surface.