Abstract:
Methods and systems for positioning a leadlet pacing device (LPD) in cardiac tissue are disclosed. A delivery device is employed that comprises a proximal end, a distal end and a lumen therebetween sized to receive the LPD. The LPD has a leadlet extending therefrom that includes a means to fixate the leadlet to tissue. The delivery device comprises an introducer to introduce the LPD into the lumen of the delivery device. The LPD is loaded in the distal end of the lumen of the delivery device. The leadlet extends proximally from the LPD while the fixation means extends distally toward the LPD. A LPD mover is configured to advance the LPD out of the delivery device. A leadlet mover is configured to advance the leadlet out of the lumen delivery device and cause the leadlet to engage with cardiac tissue.
Abstract:
Methods and systems of making a medical electrical lead type having a set of tines. A system for implantation of a lead medical electrical lead in contact with heart tissue, comprises an elongated lead body; a set of curved tines mounted to and extending from a distal end of the lead body, the tines having a length (dD) and an effective cross sectional area, and a delivery catheter. The delivery catheter encloses the lead body and has a distal capsule portion enclosing the tines. The tines exerting a spring force against the capsule and provide a stored potential energy. The tines when so fixated in the tissue provide a fixation energy. The deployment energy and the fixation energy of the tines are equivalent.
Abstract:
An implantable medical device (IMD) may include a housing having a proximal end and a distal end and a set of one or more electrodes connected to but spaced apart from the housing. The IMD may further include a controller disposed within the housing, wherein the controller is configured to sense cardiac electrical signals, and deliver electrical stimulation pulses via the first set of one or more electrodes. In some embodiments, a first portion of the housing is configured to be disposed at least partly within a coronary sinus of a patient's heart and a second portion of the housing is configured to be disposed at least partly within a right atrium of the patient's heart.
Abstract:
An implantable leadless cardiac pacing device including a housing having a proximal end and a distal end, an electrode positioned proximate the distal end of the housing configured to be positioned adjacent cardiac tissue, and a tissue anchoring member extending from the distal end of the housing configured to secure the housing to cardiac tissue. The device further includes a tissue engagement verification feature configured to provide feedback upon engagement of the tissue anchoring member in cardiac tissue.
Abstract:
Methods and devices for separating an implanted object, such as a pacemaker lead, from tissue surrounding such object in a patient's vasculature system. Specifically, the surgical device includes a handle, an elongate sheath and a circular cutting blade that extends from the distal end of the sheath upon actuating the handle. The circular cutting blade is configured to engage the tissue surrounding an implanted lead and cut such tissue in a coring fashion as the surgical device translates along the length of the lead, thereby allowing the lead, as well as any tissue remaining attached to the lead, to enter the device's elongate shaft. The surgical device has a barrel cam cylinder in the handle assembly that imparts rotation of the blade and a separate cam mechanism in the tip of outer sheath assembly that imparts and controls the extension and retraction of the blade. The barrel cam cylinder and cam mechanism cooperate to cause the blade to rotate in a first direction and extend from and retract in the outer sheath due to a first actuation of the handle and to rotate in a second direction and extend and retract in the outer sheath due to a second actuation of the handle.
Abstract:
A tine portion for an implantable medical device includes a hook segment and a distal segment terminated by a tissue-piercing tip, wherein the distal segment extends from the hook segment to the tip. The hook segment, which is elastically deformable from a pre-set curvature, has one of: a round cross-section and an elliptical cross-section, while the distal segment has a flattened, or approximately rectangular cross-section. One or a pair of the tine portions may be integrally formed, with a base portion, from a superelastic wire, wherein the base portion is configured to fixedly attach to the device, for example, being captured between insulative members of a fixation subassembly.
Abstract:
Anchoring mechanisms for an implantable electrical medical lead that is positioned within a substernal space are disclosed. The anchoring mechanisms fixedly-position a distal portion of the lead, that is implanted in the substernal space
Abstract:
A tissue anchor (20) comprises a helical tissue-coupling element (30) disposed about a longitudinal axis (32) thereof and having a distal tissue-penetrating tip (34). The helical tissue-coupling element (30) has: a first axial stiffness along a first axial portion (60) of the helical tissue-coupling element (30); a second axial stiffness along a second axial portion (62) of the helical tissue-coupling element (30) more distal than the first axial portion (60), which second axial stiffness is greater than the first axial stiffness; and a third axial stiffness along a third axial portion (64) more distal than the second axial portion (62), which third axial stiffness is less than the second axial stiffness. Other embodiments are also described.
Abstract:
Various embodiments concern a lead having a proximal section and a curbed section. The lead can comprise an outer tubular portion having a bias such that the lead assumes a curved shape along the curved section. The lead can further include an inner tubular portion extending within the outer tubular portion, the inner tubular portion comprising an inner coil conductor and an inner polymer jacket over the inner coil conductor along the curved section, the inner tubular member stiffer along the proximal section than the curved section, the outer tubular portion stiffer along the curved section relative to the inner tubular portion along the curved section such that the inner tubular portion can rotate relative to the outer tubular portion while the curved shape is substantially maintained. Relative rotation can extend and rotate and active fixation element.