Abstract:
A medical lead includes a lead body having at least one conductor extending from a proximal end of the lead body to a distal end of the lead body. The proximal end is adapted to be connected to a pulse generator, and the distal end includes a curved portion. One or more electrodes are operatively connected to the at least one conductor and coupled to the curved portion of the lead body. At least a portion of each of the one or more electrodes includes an arrangement of interconnected, spaced-apart elements that are selectively configured to allow the one or more electrodes to conform to contours of the curved portion during and after implantation of the medical lead.
Abstract:
A two-part system for securing and stabilizing a lead at a location within a patient's internal jugular vein adjacent a region of the vagus nerve to be stimulated is described. The two-part system includes a lead and a stent-like fixation member that is provided separate from the lead. The stent-like fixation member is used to secure an electrode region of the lead at a location within the internal jugular vein adjacent the vagus nerve. The stent-like fixation member urges the electrode region of the lead against the vessel walls of the internal jugular vein such that at least one electrode is oriented in a direction towards the vagus nerve. In one example, the stent-like fixation member includes a channel sized to receive and retain a portion of the lead therein.
Abstract:
Lead assemblies and methods for sensing or stimulating a first myocardial contact area and a distinct, second myocardial contact area when implanted are discussed. A lead assembly includes a lead body having at least one preformed biased portion at an intermediate portion thereof and an unbiased portion disposed between the biased portion and the distal end thereof. A first electrode is located at the preformed biased portion and is arranged to provide sensing or stimulation to the first myocardial contact area. A second electrode is located on the lead body distal to, and spaced apart from, the first electrode and is arranged to provide sensing or stimulation to the distinct, second myocardial contact area. In an example, the lead assembly includes a second preformed biased portion at the distal end of the lead body. In another example, the lead assembly includes additional electrodes.
Abstract:
A system including two neurostimulation leads can be used for stimulating a select region of a nerve within a nerve bundle. For example, two leads can be used to stimulate a select region of the vagus nerve located within a patient's carotid sheath. The first neurostimulation is positioned within the carotid sheath and the second neurostimulation lead is positioned external to the carotid sheath. Each of the first and second neurostimulation leads includes at least one electrode defining an electrode array about the select region of the nerve. The electrode array, and more particularly, the different possible electrode vector combinations provided by the first and second neurostimulation leads facilitate steering of stimulation current density fields as needed or desired between the electrodes to effectively and efficiently treat a particular medical, psychiatric, or neurological disorder.
Abstract:
A cardiac rhythm management system comprises a medical electrical lead, a pressure sensing element, and an implantable pulse generator. The lead is sized to be advanced through the right atrium and coronary sinus into a coronary vein adjacent to the left ventricle. The lead includes an opening intermediate its proximal and distal ends, a lumen extending longitudinally within the body in communication with the opening, and an electrode coupled to the lead body proximate the distal end. The pressure sensing element is movably disposed in the lead lumen and is dimensioned to extend through the opening in the lead, and includes a flexible, elongated conductive member having a distal end, and a pressure transducer coupled to the distal end of the conductive member. The pulse generator is configured to receive cardiac rhythm signals from the electrode and fluid pressure signals from the pressure transducer.
Abstract:
A system and method for detecting and treating symptoms of early decompensation utilizing a cardiac rhythm management. The system applies an electrical stimulus to the patient's heart at a first set of pacing parameters including a lower rate limit (LRL) setting, and acquires a coronary venous pressure (CVP) signal from a pressure sensor implanted in a coronary vein of the patient. An average coronary venous end diastolic pressure (CV-EDP) value is calculated from the CVP signal. The system monitors the average CV-EDP value over a predetermined interval, and dynamically adjusts the LRL setting responsive to the detection of a first or a second predetermined event based on the average CV-EDP value.
Abstract:
A system and method for estimating a hemodynamic performance parameter value of a patient s heart. The system includes a pulse generator and a medical electrical lead implanted partially within a coronary vein of heart. The lead includes at least one sensor located within the coronary vein configured to generate a signal indicative of at least one dimensional parameter of the coronary vein. Changes in the dimensional parameter during one or more cardiac cycles are measured. The hemodynamic performance parameter is estimated based on the change in the dimensional parameter of the coronary vein.
Abstract:
A system and method for pacing rate control in a cardiac rhythm management (CRM) system. The method includes acquiring a pressure signal representative of coronary venous pressure (CVP) from a pressure sensor implanted within a coronary vein of the patient and generating a CVP waveform from the pressure signal. A pacing stimulus is applied to the patient's heart, and the pacing rate is increased in response to increases in patient's metabolic demand. The CVP index is monitored during the pacing rate increase, and the CRM system detects a reduction in the patient's hemodymanic performance based on the CVP index and establishes a maximum rate setting based on the pacing rate corresponding to the reduction in the patient's hemodynamic performance.
Abstract:
An inspiratory muscle stimulation system uses an implantable medical device to deliver stimulation to control diaphragmatic contractions for slower and deeper breathing, thereby conditioning and strengthening inspiratory muscles. In various embodiments, respiratory and/or cardiac performance are monitored for controlling parameters of the stimulation.
Abstract:
Embodiments of the invention are related to leads with topographic surface features and related methods, amongst other things. In an embodiment, the invention includes an implantable lead including a lead body having a proximal end and a distal end, the lead body including an outer layer defining a lumen, the lead body further including a first electrical conductor disposed within the lumen of the outer layer. The implantable lead can further include a first electrode coupled to the lead body, the electrode in electrical communication with the first electrical conductor. The implantable lead can also include a cellular modulation segment on the external surface of the lead body, the cellular modulation segment comprising topographic surface features configured to modulate cellular responses. Other embodiments are also included herein.