Abstract:
A honeycomb structure (110) includes intersecting porous walls (106). Inlet channels (108i) and outlet channels (108o) are formed by the intersecting porous walls (106), wherein the inlet channels (108i) comprise inlet hydraulic diameters (HDi) and the outlet channels (108o) comprise outlet hydraulic diameters (HDo). The inlet channels (108i) comprise inlet corners (220i) with inlet corner radii (Ri) and the outlet channels (108o) comprise outlet corners (220o) with outlet corner radii (Ro). A centerpost (124) is defined by adjacent opposing inlet corners (220i) of two of the inlet channels (108i) and adjacent opposing outlet corners (220o) of two of the outlet channels (108o). A first diagonal length (Dl) is a shortest distance between the opposing outlet corners (220o) of the two outlet channels (108o) and a second diagonal length (D2) is a shortest distance between the opposing inlet corners (220i) of the two inlet channels (108i). The honeycomb structure (110) has certain aspect ratios D1:D2 depending on hydraulic diameter ratios HDi:HDo. Other honeycomb structures (110) and bodies (100) and extrusion dies (420) are disclosed.
Abstract:
Methods of depositing an inorganic material on an extrusion die including positioning an extrusion die within a vapor deposition chamber, positioning an impedance disk over a face of the extrusion die, the impedance disk having a plurality of through holes and the face of the extrusion die having a plurality of slots defined by a plurality of extrusion die pins, and flowing one or more deposition gases through the plurality of through holes and into the plurality of slots to deposit inorganic particles on side walls of the plurality of pins. The total impedance to the flow of the deposition gases across the impedance disk and the extrusion die may be equal to a disk impedance of the impedance disk plus a die impedance of the extrusion die, and the disk impedance may be at least 40% of the total impedance to the flow of the deposition gases.
Abstract:
A method to form a laminar integral skin of a honeycomb structure is provided. The method includes extruding a ceramic precursor batch through a die with feedholes in entry side and slots in exit face of the die to form the honeycomb structure. In a region on the periphery of the die configured to form the cell matrix, a series of concentric slots around the matrix in the exit face of the die are configured to feed skin onto the matrix. Ring sections between concentric slots are angled away from the center and a mask is disposed on top of the periphery producing a channel for extruded skin to meet and bond to extruded matrix. Optionally, slots in the skin-forming ring sections enhance knitting between laminar skin layers. The die and honeycomb body having uniform integral skin are also provided.
Abstract:
An article including a metal having an austenite transformation temperature of 850 degrees C or more. The metal may be a steel, such as a stainless steel, a martensitic steel, or a martensitic stainless steel. In some embodiments, the metal is a steel including iron, molybdenum, and tungsten, and at least one of the following: manganese, nickel, chromium, and vanadium, where the manganese, nickel, chromium, and vanadium are in the following ranges: manganese: less than 0.1 wt%, nickel: less than 0.7 wt%, chromium: more than 12.5 wt%, and vanadium: more than 0.3 wt%. The article may have a surface coated with inorganic particles. In some embodiments, the article is an extrusion die, such as a honeycomb extrusion die.
Abstract:
A honeycomb extrusion die body (401) including inlet (414) and exit (402) faces, and a plurality of pins (406) on the exit face (402) defining a matrix of intersecting wide slots (425) and narrow slots (427). The wide slots (425) have an exit width (W1) greater than an exit width (W2) of the narrow slots (427). The die body (401) further includes feedholes (422) at the inlet face (414) and intersecting with inlet portions (416) to the wide slots (425) and/or the narrow slots (427). Some of the pins (406) defining the wide slots (425) include a first surface indentation feature (430) that is (i) located between the inlet portion (416) and the wide slot exit and (ii) spaced away from the wide slot exit. Some of the pins (406) defining the narrow slots (427) include a second surface indentation feature (434) that is (i) located between the inlet portion and the narrow slot exit and (ii) spaced away from the narrow slot exit.
Abstract:
A honeycomb extrusion apparatus includes first (323) and second (327) vanes with respective first (325) and second (329) face portions. First (Wl) and second (W2) axial widths of a circumferential feed area (321) are respectively defined between the first (325) and second (329) face portions and the outer feed surface (311) of the die body (201). In further examples, methods include the steps of selectively adjusting the first axial width (Wl) and the second axial width (W2) of the circumferential feed area (321) by respectively adjusting the first (323) and second (327) vane relative to the mask (225). In further examples, a honeycomb extrusion apparatus includes a plurality of mask segments (1209a, 1209b) that each includes an inner peripheral surface portion (1501). Each of the plurality of mask segments (1209a, 1209b) are independently adjustable along a respective radial axis (1503).
Abstract:
A honeycomb extrusion die (120) includes a die body (342) including an inlet face (315) and an outlet face (341). A plurality of pins (330) extend from the die body (342), wherein the pins (330) are arranged to define primary (312P) and secondary slots (312S). Primary slots (312P) include primary slot inlets (320P) and primary slot outlets (3120) and the secondary slots (312S) include secondary slot inlets (312SI) and secondary slot outlets (312SO). Feedholes (317) extend within the die body (342), the feedholes (317) including feedhole outlets (319), wherein the feedhole outlets (319) intersect only with the primary slot inlets (320P). First surface indentation features (345) extend into side surfaces (332) of the plurality of pins (330) defining the primary slots (312P). The first surface indentation features (345) are spaced from the primary slot outlets (3120). The secondary slots (312S) are devoid of surface indentation features. Other die bodies, extruders, and methods are disclosed.
Abstract:
A skin-forming die includes an inlet face; an outlet face; one or more slots, each of the one or more slots comprising one or more slot inlets extending between the one or more slot inlets and the outlet face; a plurality of feedholes extending between the inlet face and the one or more slot inlets; and a central opening configured to receive a matrix die. Extrusion die apparatus and methods of manufacturing honeycomb bodies are also disclosed.
Abstract:
The present disclosure provides a flow device including a body disposed in an extrusion apparatus. The body is defined along a plane and has a first side and a second side. The second side is disposed opposite the first side. The flow device also includes a first face formed at the first side and a second face formed at the second side. The body has a thickness defined between the first face and second face. A plurality of feedholes is defined in the body between the first side and the second side. In addition, at least a portion of the first face or second face forms a curvature that extends outwardly from the plane.
Abstract:
An extrusion die (16) including a plurality of pins (38) having side surfaces defining an intersecting array of slots (30) extending axially into the die (16) from a discharge face (34) of the die (16). A plurality of feedholes (28) extend axially from an inlet face (32) of the die (16) opposite to the discharge face (34). The feedholes (28) connect with the slots (30) at intersections (35) within the die (16) to create a flow path from the inlet face (32) to the discharge face (34). A first coating (42) is on at least a portion of the feedholes (28) in a first zone (46) extending over a first axial length of the flow path. A second coating (44) that is different than the first coating (42) is on at least a portion of the side surfaces (37) of the pins (38) in a second zone (48) extending over a second axial length of the flow path. Methods of fabricating an extrusion die (16) and manufacturing a ceramic article (100), such as a honeycomb body, are also disclosed.