Abstract:
A glass article comprises a film layer deposited on a glass substrate. The film layer has a melting point less than 450°C and comprises a thickness and a primary surface. The primary surface defines at least one elevated surface protruding relative to the at least one relief surface. The elevated surface forms a periodic pattern defined by an etch mask, and the relief surface is defined as an inverse pattern of the etch mask. The duration of an etching process applied to the film layer defines a ratio of a first area of the elevated surface to a second area of the relief surface.
Abstract:
Disclosed herein are lenses comprising a first surface, a second convex surface, and a central region disposed therebetween, wherein the central region comprises at least one negative axicon. Also disclosed herein are optical assemblies comprising at least one lens optically coupled to at least one light emitting device.
Abstract:
A substrate for a display article includes (a) a primary surface; and (b) a textured region on at least a portion of the primary surface, the textured region comprising: (i) one or more higher surfaces residing at a higher mean elevation parallel to a base-plane disposed below the textured region and extending through the substrate; (ii) one or more lower surfaces residing at a lower mean elevation parallel to the base-plane that is less than the higher mean elevation; and (iii) a high-index material disposed on each of the one or more lower surfaces residing at the lower mean elevation, the high-index material forming one or more intermediate surfaces residing at an intermediate mean elevation parallel to the base-plane that is greater than the lower mean elevation but less than the higher mean elevation, the high-index material comprising an index of refraction that is greater than the index of refraction of the substrate.
Abstract:
A quasi-single-mode optical fiber with a large effective area is disclosed. The quasi-single-mode fiber has a core with a radius greater than 5 μm, and a cladding section configured to support a fundamental mode and a higher-order mode. The fundamental mode has an effective area greater than 170 μm2? and an attenuation of no greater than 0.17 dB/km at a wavelength of 1530 nm. The higher-order mode has an attenuation of at least 1.0 dB/km at the wavelength of 1530 nm. The quasi-single-mode optical fiber has a bending loss of less than 0.02 dB/turn for a bend diameter of 60 mm for a wavelength of 1625 nm.
Abstract:
A substrate for a display article is described herein including (a) a primary surface; and (b) a textured region disposed at the primary surface, the textured region comprising: (i) one or more higher surfaces residing at a higher mean elevation parallel to a base-plane disposed below the textured region extending through the substrate; (ii) one or more lower surfaces residing at a lower mean elevation parallel to the base-plane; and (iii) surface features providing at a least a portion of either or both of (i) the one or more higher surfaces and (ii) the one or more lower surfaces. The surface features can include larger surface features and smaller surface features, either or both providing one or more surfaces of the substrate that reside at one or more intermediate mean elevations parallel to the base-plane between the higher mean elevation and the lower mean elevation.
Abstract:
A substrate for a display article is described herein that includes (a) a primary surface; and (b) a textured region on at least a portion of the primary surface; the textured region comprising: (i) primary surface features, each comprising a perimeter parallel to a base-plane extending through the substrate disposed below the textured region, wherein the perimeter of each of the primary surface features comprises a longest dimension of at least 5 µm; and (ii) one or more sections each comprising secondary surface features having a surface roughness (Ra) within a range of 5 nm to 100 nm. In some instances, an arrangement of the surface features reflect a random distribution. A method of forming the same is disclosed.
Abstract:
A quasi-single-mode (QSM) optical fiber includes a core and a cladding surrounding the core. The core includes a centerline and an outer edge. The cladding includes an interior edge and an exterior edge. The cladding has a cladding outer diameter defined by the exterior edge of the cladding. The cladding outer diameter may be in the range of greater than 170 µm to about 200 µm. The QSM fiber has a cabled cutoff wavelength that is greater than about 1530 nm. The core and the cladding support a fundamental mode LP 01 and a higher-order mode LP 11 . The fundamental mode LP 01 has an effective area A eff > 150 µm 2 .
Abstract:
A photonic lantern includes three or more optical fibers housed within a glass capillary, each optical fiber includes a core and a cladding. The photonic lantern tapers between a first and second end such that a diameter of the glass capillary is greater at the first end than the second end and the cladding of at least two of the three or more optical fibers comprises an up-down doped cladding doped with a dopant combination that includes an up-dopant and a down-dopant. The up-dopant increases and the down-dopant decreases the effective refractive index of the up-down doped cladding. The dopant combination decreases a material viscosity of the up-down doped cladding such that a difference in the effective refractive index between a silica cladding and the up-down doped cladding is greater in a tapered region and at the second end than at the first end.
Abstract:
A substrate for a display article includes: a primary surface; a textured region on at least a portion of the primary surface, the textured region comprising surface features that reflect a random distribution, each of the surface features comprising a perimeter that is parallel to a base-plane extending through a thickness of the substrate below the textured region, wherein the perimeter is elliptical. The textured region can further include (i) one or more higher surfaces residing at a higher mean elevation from the base-plane and (ii) one or more lower surfaces residing at a lower mean elevation from the base-plane that is closer to the base-plane than the higher mean elevation. The higher mean elevation can differ from the lower mean elevation by a distance within a range of 0.05 µm to 0.70 µm.
Abstract:
A display article is described herein that includes: a substrate comprising a thickness and primary surface; a diffractive surface region defined by the primary surface; and an antireflective coating disposed on the diffractive surface region. The diffractive surface region comprises structural features that comprise different heights in a multimodal distribution. The substrate exhibits a sparkle of 1.8. The article exhibits a first-surface average visible specular reflectance of less than 0.2% at an incident angle of 20°, and a maximum hardness of ≥ 8 GPa in a Berkovich Indenter Hardness Test.