Abstract:
A microwave antenna for ablating tissue in a patient includes a radiator configured to radiate microwave radiation. A cable is coupled to the radiator and includes a fluid inflow line and a fluid outflow line. The microwave antenna also includes a ceramic element coaxially disposed around the radiator. The ceramic element includes at least one internal channel configured to transport thermal energy away from the ceramic element.
Abstract:
A microwave ablation system is presented including a microwave applicator having an antenna configured to deliver microwave energy and a microwave generator coupled to the microwave applicator and configured to generate a microwave signal and transmit the microwave signal to the antenna. The microwave ablation system further includes a radiometer configured to measure emissions from a thermal field created when the microwave applicator delivers microwave energy, the thermal field providing in-situ quantitative information of a material in the thermal field. The quantitative information is used to automatically adjust power transmission and time settings of the microwave generator to compensate for different thermal environments.
Abstract:
A system for light based interrogation of a lung includes a memory, an electromagnetic (EM) board, an extended working channel (EWC), an EM sensor, a light source, a light receptor and a processor. The memory stores a 3D model and a pathway plan of a luminal network and the EM board generates an EM field. The EWC navigates a luminal network of a patient toward a target in accordance with the pathway plan and the EM sensor extends distally from a distal end of the EWC and is configured to sense the EM field. The light source is located at or around the EWC and emits light, and the light receptor is located at or around the EWC and is configured to sense reflected light from airway of the luminal network. The processor converts the reflected light into light based data and identifies a type or density of tissue.
Abstract:
A system for ultrasound interrogation of a lung includes a memory, an electromagnetic (EM) board, an extended working channel (EWC), an EM sensor, a US transducer, and a processor. The memory stores a three dimensional (3D) model, a pathway plan for navigating a luminal network. An EM board generates an EM field. The EWC is configured to navigate the luminal network of a patient toward a target following the pathway plan and the EM sensor extends distally from the EWC and senses the EM field. The US transducer extends distally from a distal end of the EWC and generates US waves and receives US waves reflected from the luminal network and the processor processes the sensed EM field to synchronize a location of the EM sensor in the 3D model, to process the reflected US waves to generate images, or to integrate the generated images with the 3D model.
Abstract:
A patient isolator for a microwave generator includes a DC block grounded to a microwave module of the microwave generator, a proximal absorber wrapped around a proximal portion of the DC block, and a distal absorber wrapped around a distal portion of the DC block and separated from the proximal absorber by a gap.
Abstract:
A method of generating a representation of an active heating zone on a display in real time during an ablation procedure includes processing imaging data of a surgical site generated by an imaging device, navigating an ablation device in proximity to target tissue, delivering electrosurgical energy to the target tissue via the ablation device to generate an active heating zone, detecting a Doppler shift in the imaging data based on the delivery of electrosurgical energy to the target tissue, and generating a representation of the active heating zone relative to the surgical site based on the detected Doppler shift.
Abstract:
A system and method enabling the receipt of image data of a patient, identification of one or more locations within the image data depicting symptoms of COPD, analyzing airways and vasculature proximate the identified locations; planning a pathway to the one or more locations, navigating an extended working channel to one of the locations, positioning a microwave ablation catheter proximate the location, and energizing the microwave ablation catheter to treat the locations depicting symptoms of COPD.
Abstract:
A surgical probe includes a connection hub, an antenna assembly, and an outer jacket. The antenna assembly is coupled to the connection hub, extends distally from the connection hub, and includes a radiating portion coupled thereto at the distal end thereof. The radiating portion is configured to deliver energy to tissue to treat tissue. The outer jacket is coupled to the connection hub, extends distally therefrom, and is disposed about the radiating portion. The outer jacket includes a distal end member configured to be spaced-apart from the radiating portion a target axial distance. One or more of the couplings between the antenna assembly and the connection hub, the radiating portion and the antenna assembly, and the outer jacket and the connection hub defines a flexible configuration permitting axial movement therebetween to maintain the target axial distance between the radiating portion and the distal end member.
Abstract:
An energy applicator for directing electromagnetic energy to tissue is provided. The energy applicator includes a feedline, an antenna, and a balun structure. The feedline includes an inner conductor, an outer conductor coaxially disposed around the inner conductor, and a first dielectric material disposed therebetween. The antenna includes a radiating section operably coupled to the feedline. The balun structure is coaxially disposed around the outer conductor of the feedline with a medium disposed therebetween, and is galvanically isolated from the feedline. An energy application system for directing energy to tissue is also provided.