Abstract:
A monoblock engine, comprising a cylinder head, a cylinder block positioned adjacent the cylinder head and comprising at least one cylinder bore, and an upper crank case positioned adjacent the cylinder block and comprising a portion of at least two main bearings, the portion having a first side and a second side, at least one of the first side and the second side having an indentation.
Abstract:
A cylinder head defines an EGR crossover tube integrally formed in the cylinder head. The EGR crossover tube includes a first end fluidly coupled to an exhaust port of an engine. A second end is fluidly coupled to an intake port of the engine. A Venturi tube configuration is positioned between the first and second ends. A first sensor port extends through the cylinder head to the EGR crossover tube. The first sensor port is positioned at a restriction of the Venturi tube configuration. A second sensor port extends through the cylinder head to the EGR crossover tube. The second sensor port is positioned proximate the first end. A differential pressure sensor includes a first pressure sensor positioned in the first sensor port and a second pressure sensor positioned in the second sensor port.
Abstract:
The present disclosure provides a captive sprocket system for an engine, comprising: a sprocket including a first sprocket gear, a second sprocket gear and a retaining disc having a diameter and a thickness; a cylinder block having a bore with a central opening and a plurality of threaded bosses, the plurality of threaded bosses together forming an axial support surface and a radial location surface, the axial support surface and the radial location surface being sized to receive the retaining disc of the sprocket to support and locate the sprocket; and a plurality of captivation screws configured to be received by the plurality of threaded bosses, each captivation screw having a head with a lower surface which, when the captivation screw is received by a threaded boss, overlies the retaining disc and retains the sprocket in the bore.
Abstract:
An internal combustion engine includes an engine lubrication fluid storage system with a primary storage volume and a secondary storage volume that is separated from the primary storage volume. The secondary storage volume is linked to the primary storage volume with a fluid flow path that is normally blocked by a valve that is associated with a filtering device. Removal of the filtering device during the service event unblocks the fluid flow path, allowing fluid to flow from the secondary storage volume to the primary storage volume for drainage from the engine during the service event.
Abstract:
Systems and devices are disclosed for controlling fluid flow to piston cooling nozzles with a fluid flow control device configured to open when an internal combustion engine requires piston cooling at high speed but remains open for a period of time after the engine speed drops below a threshold to prevent heat soak damage to the pistons.
Abstract:
The present disclosure provides a captive sprocket system for an engine, comprising: a sprocket including a first sprocket gear, a second sprocket gear and a retaining disc having a diameter and a thickness; a cylinder block having a bore with a central opening and a plurality of threaded bosses, the plurality of threaded bosses together forming an axial support surface and a radial location surface, the axial support surface and the radial location surface being sized to receive the retaining disc of the sprocket to support and locate the sprocket; and a plurality of captivation screws configured to be received by the plurality of threaded bosses, each captivation screw having a head with a lower surface which, when the captivation screw is received by a threaded boss, overlies the retaining disc and retains the sprocket in the bore.
Abstract:
A lubricant filter housing comprises a top plate defining a first opening. A base plate is positioned opposite the top plate. The lubricant filter housing further comprises at least one sidewall which cooperatively with the top plate and the base plate defines an internal volume. A plurality of plates are axially positioned in the internal volume between the top plate and the base plate. Each plate defines a plate opening axially aligned with the first opening which cooperatively with the first opening and a portion of the base plate, defines an internal cavity for housing a filter element. The plates define a first set of fluid channels structured to deliver a lubricant to the internal cavity, and a second set of fluid channels structured to provide a coolant around the first set of fluid channels.
Abstract:
An internal combustion engine includes a cylinder block, a cylinder head integral with the cylinder block, and a cylinder bore extending along a longitudinal axis within the cylinder block body. The cylinder bore has an upper portion adjacent the cylinder head and a lower portion longitudinally inward of the upper portion. The upper portion of the cylinder bore has a first radius and the lower portion of the cylinder bore having a second radius which is less than the first radius.