Abstract:
A heat exchanger has inlet and outlet fittings, each having a base portion and a top portion, and having a circumferential groove provided with a resilient sealing element for sealing within a bore of a coolant manifold. Each fitting also has a base fitting with an annular sealing surface sealed to a surface of the heat exchanger. In an embodiment, the base portion has a larger diameter than the top portion, and the groove and sealing element are provided in the bottom portion, with a chamfer or sloped surface separating the base and top portions. In another embodiment, the top portion has a larger diameter than the base portion, and the groove and sealing element are provided in the top portion.
Abstract:
A heat exchanger comprises a thermally conductive first plate having a flat first surface for thermal contact with a heat transfer fluid, and a flat second surface for thermal contact with an object to be heated or cooled, such as an electronic component. The first surface is provided with a first surface pattern comprising a plurality of first grooves, and the second surface is provided with a second surface pattern comprising a plurality of second grooves. The surface patterns may be configured and applied such that the amount of elongation along the first surface produced by application of the first surface pattern substantially corresponds to or offsets the amount of elongation along the second surface produced by application of the second surface pattern, such that the degree of flatness of the first plate prior to formation of the first and second surface patterns will be preserved, maintained or improved.
Abstract:
A heat exchanger panel has a heat transfer surface with first and second heat transfer zones of different cooling capacities. Each zone has a subgroup of fluid flow passages having a flow capacity, each extending between a fluid inlet passage and a fluid outlet passage. Where one of the zones is adapted for cooling the tabs of a battery cell, the heat exchanger panel comprises at least one first header located at an end of the panel, including a fluid inlet header and/or a fluid outlet header, a second header at the opposite end of the panel, and a plurality of flow passages extending between the headers. At least one header has a height which is greater than the height of the flow passages, and is substantially the same as a spacing between tabs of adjacent batteries when separated by one of said heat exchanger panels.