Abstract:
Multilayer films having a layer including a medium density polyethylene having (a) a first polyethylene fraction having a single peak in a temperature range of 45 °C to 87 °C in an elution profile via improved comonomer composition distribution (iCCD); and (b) a second polyethylene fraction having a single peak in a temperature range of 95 °C to 120 °C via iCCD analysis. The polyethylene composition has a density of 0.924 g/cm3 to 0.936 g/cm3 and a melt index (I2) of 0.25 g/10 minutes to 2.0 g/10 minutes, a first polyethylene fraction area comprises at least 40% of the total area of the elution profile, a ratio of the first polyethylene fraction area to the second polyethylene fraction area is 0.75 to 2.5, and the width of the single peak of the second polyethylene fraction at 50 percent peak height is less than 5.0 °C.
Abstract:
The present invention relates to a method for flocculating and dewatering oil sands fine tailings. Said method comprises mixing the aqueous mineral suspension with a poly(ethylene oxide) (co)polymer to form a dough-like material. The material is then dynamically mixed in an in-line reactor to break down the dough-like material to form microflocs having an average size of 1 to 500 microns, and to release water. The internal diameter of the in-line reactor is at most five times the internal diameter of the inlet pipe of the reactor. The suspension of microflocs has a viscosity of at most 1000 cP and a yield stress of at most 300 Pa.
Abstract:
Embodiments of the present invention relate to multilayer films, bags, and other articles. In one aspect, a multilayer film comprises a first skin layer having an overall density of less than or equal to 0.912 g/cm 3 ; a second skin layer having an overall density of less than or equal to 0.912 g/cm 3 ; and a core positioned between the skin layers, wherein the core has an overall density that is at least 0.01 g/cm 3 greater than then overall density of the first skin layer, wherein the overall density of the multilayer film is from 0.905 to 0.930 g/cm 3 , wherein the film has a bending stiffness of 1.35 mN·mm or less when the film has a thickness of 2 mils (50.8 microns), wherein the film exhibits a Gelbo flex crack performance of 2 pinholes or less in 20,000 cycles, and wherein the film comprises at least 95% by weight polyethylene based on the total weight of the film.
Abstract:
The present disclosure relates to a multilayer stretch film comprising at least a first layer, wherein said first layer comprises a polyolefin resin. The film of this aspect of the disclosure further include at least a second layer, and a mechanochromic dye which may be in any or all layers of the film. Another aspect of the disclosure is a method of promoting optimal stretching of stretch film during a wrapping operation, which method comprises at least the following steps. A polyolefin resin is selected that has a given density. Selecting a mechanochromic dye based on its ability to agglomerate in an unstretched film made from the polyolefin resin having the given density, such that when the dye is included in the film, the unstretched film will exhibit a first color. Admixing the mechanochromic dye into a melt of the polyolefin resin. Forming a film from the admixture of the previous step. Wrapping an object using the film of the previous step, while stretching the film to a level where a change from the first color to a second color can be observed.
Abstract:
The present invention relates to oriented, multilayer polyethylene films. In one aspect, a biaxially oriented, multilayer polyethylene film comprises at least one layer comprising: (1) a polyethylene-based composition that comprises: (a) at least 97% by weight, based on the total weight of the polyethylene-based composition, of a polyethylene composition comprising: (i) from 25 to 37 percent by weight of a first polyethylene fraction having a density in the range of 0.935 to 0.947 g/cm3 and a melt index (I2) of less than 0.1 g/10 minutes; and (ii) from 63 to 75 percent by weight of a second polyethylene fraction; wherein the polyethylene composition has less than 0.10 branches per 1,000 carbon atoms when measured using 13C NMR, wherein the density of the polyethylene-based composition is at least 0.965 g/cm3, and wherein the melt index (I2) of the polyethylene-based composition is 0.5 to 10 g/10 minutes.
Abstract:
The present disclosure relates a method to adjust the amount of elongation required to effect a color change in a polymer stretch film. A first aspect of the invention is a method which method comprises selecting a polyolefin resin having a given density; admixing a given amount of the AIE mechanochromic dye into a melt of the polyolefin resin; making a film of a desired thickness from the polyolefin resin containing the mechanochromic dye; determining the level of elongation needed to effect a color change in the resulting film; and adjusting the density of the polyolefin resin to change the level of elongation needed to effect the color change to the desired level.
Abstract:
The present invention relates to oriented, multilayer polyethylene films. In one aspect, a biaxially oriented, multilayer polyethylene film comprises: at least one inner layer comprising: (1) a polyethylene-based composition that comprises: (a) at least 97% by weight, based on the total weight of the polyethylene-based composition, of one or more polyethylenes having a density between 0.926g/cm3 to 0.970g/cm3 and a melt index (I2) between 0.1 to 10 g/10 min; (b) 20 to 5000 ppm, based on the total weight of the polyethylene-based composition of a sorbitol acetal derivative comprising the structure of formula (I): wherein R1-R5 comprise the same or different moieties chosen from hydrogen and a C1-C3 alkyl.
Abstract:
The present invention relates to oriented, multilayer polyethylene films. In one aspect, a biaxially oriented, multilayer polyethylene film comprises at least one layer comprising: (1) a polyethylene-based composition that comprises: (a) at least 97% by weight, based on the total weight of the polyethylene-based composition, of a polyethylene composition comprising: (i) from 25 to 37 percent by weight of a first polyethylene fraction having a density in the range of 0.935 to 0.947 g/cm3 and a melt index (I2) of less than 0.1 g/10 minutes; and (ii) from 63 to 75 percent by weight of a second polyethylene fraction; and (b) 20 to 5000 ppm, based on the total weight of the polyethylene-based composition of a nucleating agent, wherein the nucleating agent comprises a calcium salt of 1,2-cyclohexanedicarboxylic acid or sodium 4-[(4-chlorobenzoyl) amino] benzoate; wherein the polyethylene composition has less than 0.10 branches per 1,000 carbon atoms when measured using 13C NMR, wherein the density of the polyethylene-based composition is at least 0.965 g/cm3, and wherein the melt index (I2) of the polyethylene-based composition is 0.5 to 10 g/10 minutes.
Abstract:
Embodiments of the present disclosure are directed to multilayer films. Embodiments of the multilayer films may include a first layer comprising a polyethylene composition having a density of 0.924 g/cm 3 to 0.936 g/cm 3 and a melt index (I 2 ) of 0.25 g/10 minutes to 2.0 g/10 minutes, a second layer comprising a first polyolefin, a third layer comprising a second polyolefin. The first layer may be positioned between the second layer and the third layer. The first polyolefin and the second polyolefin may be the same or different.
Abstract:
The present invention provides methods of making films and methods of making packages. In one aspect, a method of making a film having a beta ratio and a permeability comprises: (a) selecting a polyolefin, the polyolefin comprising low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, polypropylene, polyolefin elastomer, polyolefin plastomer, or a combination thereof; (b) identifying a target beta ratio and a target oxygen permeability for the film; (c) selecting one or more additives based on the target beta ratio, the one or more additives comprising calcium carbonate, carbon black, ethylene vinyl acetate, or a combination thereof; (d) determining an amount of the selected additive(s) based on the target beta ratio and the target oxygen permeability; and (e) forming a film comprising the polyolefin and the selected additive(s), wherein the film has the target beta ratio and the target oxygen permeability.