Abstract:
Provided is a collection of polymeric beads, wherein the beads comprise (i) 75 to 99% by weight, based on the weight of the bead, polymerized units of monofunctional vinyl monomer, and (ii) 1 to 25% by weight, based on the weight of the bead, polymerized units of multifunctional vinyl monomer; wherein, within each bead, the average concentration of moles of polymerized units of multifunctional vinyl monomer per cubic micrometer is MVAV; wherein, within each bead, T1000 is a sequence of 1,000 unique connected polymerized monomer units; wherein, within each T1000, MVSEQ is the weight percent polymerized units of multifunctional vinyl monomer, based on the weight of T1000; wherein MVRATIO = MVSEQ / MVAV; and wherein 90% or more of the beads by volume are uniform beads, wherein a uniform bead is a bead in which 90% or more of all T1000 sequences has MVRATIO of 1.5 or less.
Abstract:
Provided is a method of treating a vinyl aromatic resin (I) comprising (a) bringing the vinyl aromatic resin (I) into contact with an alcohol, and maintaining the contact between the vinyl aromatic resin (I) and the alcohol for 10 minutes or more, and (b) bringing the vinyl aromatic resin into contact with a base. wherein the vinyl aromatic resin (I), prior to steps (a) and (b), has benzyl chloride groups, benzyl alcohol groups, and methylene bridge groups.
Abstract:
Provided is a method of regenerating an acrylic resin (B2), comprising (A) providing a collection of particles of acrylic resin (B2) that has calculated Hansch parameter of -1.0 to 2.5, wherein one or more humic acid, one or more fulvic acid, or a mixture thereof, is adsorbed onto said acrylic resin (B2), and (B) bringing said collection of particles of acrylic resin (B2) into contact with an aqueous solution (RB) having pH of 10 or higher, to form a mixture B2RB, (C) then separating acrylic resin (B4) from said mixture B2RB.
Abstract:
A method for making an anion exchange or chelant resin comprising a vinyl aromatic polymer including a repeating unit comprising an aromatic ring substituted with an aliphatic amino group, wherein the method comprises the step of reacting a vinyl aromatic polymer with a nitro compound comprising from 1 to 12 carbon atoms with the proviso that the α carbon includes at least one hydrogen.
Abstract:
Provided is a catalyst composition comprising (a) a collection of resin beads having sulfonic acid functional groups, (b) a promoter having a thiol group and an amine group, and (c) an antioxidant having the structure (I), wherein each of R 1 and R 2 , and R 3 is hydrogen or a substituted or unsubstituted alkyl or alkenyl group wherein n is 0 to 10, with the proviso that when R 3 contains one or more nitrogen atoms, n is not 1 or 2.
Abstract:
A method of removing colloidal cobalt from an aqueous composition comprising bringing the aqueous composition into contact with a vinyl aromatic resin, wherein the vinyl aromatic resin comprises benzyl alcohol groups, benzyl ether groups, and methylene bridge groups, wherein the vinyl aromatic resin has a chlorine content, by weight based on the weight of resin, of 10,000 ppm or less.
Abstract:
Provided is vinyl aromatic resin comprising benzyl alcohol groups, benzyl ether groups, and methylene bridge groups, wherein the mole ratio of the benzyl ether groups to the methylene bridge groups is from 0.002:1 to 0.1:1, wherein the vinyl aromatic resin either has no amine groups or else has amine groups in a mole ratio of the sum of all amine groups to aromatic rings of 0.1:1 or lower.
Abstract:
Provided is a method of regenerating an acrylic resin (B2), comprising (A) providing a collection of particles of acrylic resin (B2) that has calculated Hansch parameter of -1.0 to 2.5, wherein one or more humic acid, one or more fulvic acid, or a mixture thereof, is adsorbed onto said acrylic resin (B2), and (B) bringing said collection of particles of acrylic resin (B2) into contact with an aqueous solution (RA) having pH of 4 or lower, to form a mixture B2RA, (C) then separating acrylic resin (B3) from said mixture B2RA.
Abstract:
Provided is a method of purifying water comprising (a) providing an aqueous solution (A) that has pH of 5.5 or lower and that comprises (i) one or more dissolved organic compounds in an amount of 5 mg/L or more, measured as dissolved organic carbon, and (ii) 95% or more water by weight based on the weight of the aqueous solution (A), and (b) bringing the aqueous solution (A) into contact with a collection of particles of acrylic resin (B) that has calculated Hansch parameter of -1.0 to 2.5, and (c) then separating an aqueous solution (C) from the collection of particles of acrylic resin (B).
Abstract:
A water-insoluble copolymer including an epoxide containing structural unit represented by Formula (I), wherein: the epoxide containing group is positioned meta, ortho or para on the ring relative to the bond linkage with the polymer backbone; L is an optional linking group; and R 1 , R 2 and R 3 are independently selected from: hydrogen, or a substituted or unsubstituted hydrocarbyl group.