Abstract:
A system includes a hydraulic energy transfer system configured to exchange pressures between a first fluid and a second fluid, wherein pressure of the first fluid is greater than pressure of the second fluid. The system also includes a lubrication system coupled to the hydraulic energy transfer system and configured to pump or direct a lubrication fluid into the hydraulic energy transfer system.
Abstract:
A method includes removing a worn portion from a component of a rotary isobaric pressure exchanger (IPX). The rotary IPX is configured to exchange pressures between a first fluid and a second fluid. The method also includes repairing the component after the worn portion is removed from the component.
Abstract:
A system including a rotary isobaric pressure exchanger (IPX) configured to exchange pressures between a first fluid and a second fluid, and a motor system coupled to the hydraulic energy transfer system and configured to power the hydraulic energy transfer system.
Abstract:
A pressure exchanger includes a rotor forming a duct from a first duct opening to a second duct opening. The pressure exchanger further includes a floating piston configured to move within the duct between the first duct opening and the second duct opening to prevent mixing of a first fluid and a second fluid while exchanging pressure between the first fluid and the second fluid. The pressure exchanger further includes a first adapter plate configured to prevent the floating piston from exiting the duct at the first duct opening and a second adapter plate configured to prevent the floating piston from exiting the duct at the second duct opening. The first adapter plate forms a first aperture that directs the first fluid to the first duct opening and the second adapter plate forms a second aperture that directs the second fluid to the second duct opening.
Abstract:
A fluid handling system includes a pressure exchanger (PX) configured to receive a first fluid at a first pressure and a second fluid at a second pressure and exchange pressure between the first fluid and the second fluid. The system further includes a condenser configured to provide corresponding thermal energy from the first fluid to a corresponding environment. The system further includes a receiver to receive the first fluid output by the PX. The receiver forms a chamber to separate the first fluid into a first gas and a first liquid. The system further includes a first booster to increase pressure of a portion of the first gas to form the second fluid at the second pressure and provide the second fluid at the second pressure to the PX.
Abstract:
A system includes a pressure exchanger (PX) configured to receive a first fluid at a first pressure, receive a second fluid at a second pressure, and exchange pressure between the first fluid and the second fluid. The first fluid is to exit the PX at a third pressure and the second fluid is to exit the PX at a fourth pressure. The system further includes a first heat exchanger configured to provide the first fluid to the PX and provide corresponding thermal energy from the first fluid to a third fluid. The system further includes a turbine configured to receive the third fluid output from the first heat exchanger. The turbine is further configured to convert corresponding thermal energy of the third fluid into kinetic energy.
Abstract:
A system includes a pump (20) configured to pressurize a first fluid, and a pressure exchanger (PX). The PX is configured to receive a second fluid, to receive the pressurized first fluid, and to utilize the pressurized first fluid to pressurize the drilling mud for transport to a well.
Abstract:
A method for manufacturing a rotating assembly includes providing an impeller including a shaft and at least one blade. The method also includes providing a thrust plate configured to contact a bearing fluid. The method further includes brazing the thrust plate to the impeller.
Abstract:
A system includes a hydraulic fracturing system (10) including a hydraulic energy transfer system (12) configured to exchange pressures between a first fluid and a second fluid. The hydraulic fracturing system (10) also includes a common manifold (11) including one or more high pressure manifolds (100, 104) and one or more low pressure manifolds (102, 106). The one or more high pressure manifolds and the one or more low pressure manifolds are coupled to the hydraulic energy transfer system (12).
Abstract:
A system includes an integrated manifold system including multiple isobaric pressure exchangers (IPXs) that each includes a low-pressure first fluid inlet, a high-pressure second fluid inlet, a high-pressure first fluid outlet, and a low-pressure second fluid outlet. The integrated manifold system includes a low-pressure first fluid manifold coupled to each of the low-pressure first fluid inlets and configured to provide low-pressure first fluid to each of the low-pressure first fluid inlets, a high-pressure second fluid manifold coupled to each of the high-pressure second fluid inlets and configured to provide high-pressure second fluid to each of the high-pressure second fluid inlets, a high-pressure first fluid manifold coupled to each of the high-pressure first fluid outlets and configured to discharge high-pressure first fluid, and a low-pressure second fluid manifold coupled to each of the low-pressure second fluid outlets and configured to discharge low-pressure second fluid.